Part Number Hot Search : 
PMWD16UN 220CA KC847B D6433 T3A100 F1505 2SB850 TFS986A
Product Description
Full Text Search
 

To Download STR710FBZ2 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 STR71xF
ARM7TDMITM 32-bit MCU with Flash, USB, CAN 5 timers, ADC, 10 communications interfaces
Core - ARM7TDMI 32-bit RISC CPU - 59 MIPS @ 66 MHz from SRAM - 45 MIPS @ 50 MHz from Flash Memories - Up to 256Kbytes Flash program memory (10 kcycles endurance, 20 yrs retention) - 16K bytes Flash data memory (100 kcycles endurance, 20 yrs retention) - Up to 64 Kbytes RAM - External Memory Interface (EMI) for up to 4 banks of SRAM, Flash, ROM - Multi-boot capability Clock, Reset and Supply Management - 3.0 to 3.6V application supply and I/Os - Internal 1.8V regulator for core supply - Clock input from 0 to 16.5 MHz - Embedded RTC oscillator running from external 32 kHz crystal - Embedded PLL for CPU clock - Realtime Clock for clock-calendar function - 5 power saving modes: SLOW, WAIT, LPWAIT, STOP and STANDBY modes Nested interrupt controller - Fast interrupt handling with multiple vectors - 32 vectors with 16 IRQ priority levels - 2 maskable FIQ sources
LQFP64 10 x 10
LQFP144 20 x 20
LFBGA64 8 x 8 x 1.7 LFBGA64 8 x 8 x 1.7
LFBGA144 10 x 10 x 1.7
5 Timers - 16-bit watchdog timer - 3 16-bit timers with 2 input captures, 2 output compares, PWM and pulse counter - 16-bit timer for timebase functions 10 Communications Interfaces - 2 I2C interfaces (1 multiplexed with SPI) - 4 UART asynchronous serial interfaces - Smart Card ISO7816-3 interface on UART1 - 2 BSPI synchronous serial interfaces - CAN interface (2.0B Active) - USB Full Speed (12Mbit/s) Device Function with Suspend and Resume - HDLC synchronous communications 4-channel 12-bit A/D Converter - Sampling frequency up to 1kHz - Conversion range: 0 to 2.5V Development Tools support
STR711 FR2 256+16 64 STR712 FR0 64+16 16 STR712 FR1 128+16 32 CAN, 32 I/Os STR712 FR2 256+16 64 STR715 FRx 64+16 16 32 I/Os

Up to 48 I/O ports - 30/32/48 multifunctional bidirectional I/Os - Up to 14 ports with interrupt capability Table 1. Device summary
Features Flash - Kbytes RAM - Kbytes Peripheral Functions Operating Voltage Operating Temp. Packages T=LQFP144 20 x 20 H=LFBGA144 10 x10 STR710 FZ1 128+16 32 STR710 FZ2 256+16 64 STR710 RZ 0 64 STR711 FR0 64+16 16
STR711 FR1 128+16 32
CAN, EMI, USB, 48 I/Os
USB, 30 I/Os 3.0 to 3.6V -40 to +85C
T=LQFP64 10 x10 / H=LFBGA64 8 x 8 x 1.7
May 2006
Rev 8
1/74
www.st.com 74
Contents
STR71xF
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 On-Chip Peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Related Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Pin Description for 144-Pin Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Pin description for 64-pin packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 External Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 I/O Port Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Memory Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2
Electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2 2.3
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 2.3.7 2.3.8 2.3.9 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Clock and timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 EMI - Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.1 3.2 Package Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2/74
STR71xF
Contents
4 5 6
Product history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Note:
For detailed information on the STR710 Microcontroller memory, registers and peripherals, please refer to the STR710 Reference Manual.
3/74
Introduction
STR71xF
1
Introduction
This datasheet provides the STR71x Ordering Information, Mechanical and Electrical Device Characteristics. For complete information on the STR710 Microcontroller memory, registers and peripherals. please refer to the STR710 Reference Manual. For information on programming, erasing and protection of the internal Flash memory please refer to the STR7 Flash Programming Reference Manual For information on the ARM7TDMI core please refer to the ARM7TDMI Technical Reference Manual.
1.1
Overview
ARM(R) core with embedded Flash & RAM The STR710 series is a family of ARM-powered 32-bit Microcontrollers with embedded Flash and RAM. It combines the high performance ARM7TDMI CPU with an extensive range of peripheral functions and enhanced I/O capabilities. STR71xF devices have on-chip high-speed single voltage FLASH memory and high-speed RAM. STR710R devices have high-speed RAM but no internal Flash. The STR710 family has an embedded ARM core and is therefore compatible with all ARM tools and software. Extensive tools support STMicroelectronics' 32-bit, ARM core-based microcontrollers are supported by a complete range of high-end and low-cost development tools to meet the needs of application developers. This extensive line of hardware/software tools includes starter kits and complete development packages all tailored for ST's ARM core-based MCUs. The range of development packages includes third-party solutions that come complete with a graphical development environment and an in-circuit emulator/programmer featuring a JTAG application interface. These support a range of embedded operating systems (OS), while several royalty-free OSs are also available. For more information, please refer to ST MCU site http://www.st.com/mcu Package Choice: Low Pin-Count 64-pin or Feature-Rich 144-pin LQFP or BGA The STR710 family is available in 5 main versions. The 144-pin versions have the full set of all features including CAN, USB and External Memory Interface (EMI).

STR710F: 144-pin BGA or LQFP with CAN, USB and EMI STR710R: Flashless 144-pin BGA or LQFP with CAN, USB and EMI (no internal Flash memory)
4/74
STR71xF
Introduction The three 64-pin versions (BGA or LQFP) do not include External Memory Interface.

STR715F: 64-pin BGA or LQFP without CAN or USB STR711F: 64-pin BGA or LQFP with USB STR712F: 64-pin BGA or LQFP with CAN
High Speed Flash Memory (STR71xF) The Flash program memory is organized in two banks of 32-bit wide Burst Flash memories enabling true read-while-write (RWW) operation. Device Bank 0 is up to 256 Kbytes in size, typically for the application program code. Bank 1 is 16K bytes, typically used for storing data constants. Both banks are accessed by the CPU with zero wait states @ 33 MHz Bank 0 memory endurance is 10K write/erase cycles and Bank 1 endurance is 100K write/erase cycles. Data retention is 20 years on both banks. The two banks can be accessed independently in read or write. Flash memory can be accessed in two modes:

Burst mode: 64-bit wide memory access at up to 50 MHz. Direct 32-bit wide memory access for deterministic operation at up to 33 MHz.
The STR7 embedded Flash memory can be programmed using In-Circuit Programming or In-Application programming. IAP (In-Application Programming): The IAP is the ability to re-program the Flash memory of a microcontroller while the user program is running. ICP (In-Circuit Programming): The ICP is the ability to program the Flash memory of a microcontroller using JTAG protocol while the device is mounted on the user application board. The Flash memory can be protected against different types of unwanted access (read/write/erase). There are two types of protection:

Sector Write Protection Flash Debug Protection (locks JTAG access)
Refer to the STR7 Flash Programming Reference manual for details. Optional External Memory (STR710) The non-multiplexed 16-bit data/24-bit address bus available on the STR710 (144-pin) supports four 16-Mbyte banks of external memory. Wait states are programmable individually for each bank allowing different memory types (Flash, EPROM, ROM, SRAM etc.) to be used to store programs or data. Figure 1 shows the general block diagram of the device family. Flexible Power Management To minimize power consumption, you can program the STR710 to switch to SLOW, WAIT, LPWAIT (low power wait), STOP or STANDBY mode depending on the current system activity in the application. Flexible Clock Control Two external clock sources can be used, a main clock and a 32 kHz backup clock. The embedded PLL allows the internal system clock (up to 66 MHz) to be generated from a main clock frequency of 16 MHz or less. The PLL output frequency can be programmed using a wide selection of multipliers and dividers. The microcontroller core, APB1 and APB2 peripherals are in separate clock domains and can be programmed to run at different frequencies during application runtime. The clock to each peripheral is gated with an
5/74
Introduction
STR71xF
individual control bit to optimize power usage by turning off peripherals any time they are not required. Voltage Regulators The STR710 requires an external 3.0-3.6V power supply. There are two internal Voltage Regulators for generating the 1.8V power supply for the core and peripherals. The main VR is switched off during low power operation. Low Voltage Detectors Each voltage regulator has an embedded LVD that monitors the internal 1.8V supply. If the regulated voltage drops below a certain threshold, the LVD will reset the STR710. This enhances the security of the system by preventing the MCU from going into an unpredictable state. An external reset circuit must be used to provide the RESET at V33 power-up. It is not sufficient to rely on the RESET generated by the LVD in this case. This is because LVD operation is guaranteed only when V33 is within the specification.
1.2
On-Chip Peripherals
CAN Interface (STR710 and STR712) The CAN module is compliant with the CAN specification V2.0 part B (active). The bit rate can be programmed up to 1 MBaud. USB Interface (STR710 and STR711) The full-speed USB interface is USB V2.0 compliant and provides up to 16 bidirectional/32 unidirectional endpoints, up to 12 Mb/s (full-speed), support for bulk transfer, isochronous transfers and USB Suspend/Resume functions. Standard Timers Each of the four timers have a 16-bit free-running counter with 7-bit prescaler Three timers each provide up to two input capture/output compare functions, a pulse counter function, and a PWM channel with selectable frequency. The fourth timer is not connected to the I/O ports. It can be used by the application software for general timing functions. Realtime Clock (RTC) The RTC provides a set of continuously running counters driven by the 32 kHz external crystal. The RTC can be used as a general timebase or clock/calendar/alarm function. When the STR710 is in Standby mode the RTC can be kept running, powered by the low power voltage regulator and driven by the 32 kHz external crystal. UARTs The 4 UARTs allow full duplex, asynchronous, communications with external devices with independently programmable TX and RX baud rates up to 1.25 Mb/s. Smart Card Interface UART1 is configurable to function either as a general purpose UART or as an asynchronous Smart Card interface as defined by ISO 7816-3. It includes Smart Card clock generation and provides support features for synchronous cards.
6/74
STR71xF Buffered Serial Peripheral Interfaces (BSPI)
Introduction
Each of the two SPIs allow full duplex, synchronous communications with external devices, master or slave communication at up to 5.5Mb/s in Master mode and 4 Mb/s in Slave mode. I2C Interfaces The two I2C Interfaces provide multi-master and slave functions, support normal and fast I2C mode (400 kHz) and 7 or 10-bit addressing modes. One I2C Interface is multiplexed with one SPI, so either 2xSPI+1x I2C or 1xSPI+2x I2C may be used at a time. HDLC interface The High Level Data Link Controller (HDLC) unit supports full duplex operation and NRZ, NRZI, FM0 or MANCHESTER protocols. It has an internal 8-bit baud rate generator. A/D Converter The Analog to Digital Converter, converts in single channel or up to 4 channels in singleshot or round robin mode. Resolution is 12-bit with a sampling frequency of up to 1 kHz. The input voltage range is 0-2.5V. Watchdog The 16-bit Watchdog Timer protects the application against hardware or software failures and ensures recovery by generating a reset. I/O Ports The 48 I/O ports are programmable as Inputs or Outputs. External Interrupts Up to 14 external interrupts are available for application use or to wake-up the application from STOP mode.
7/74
Introduction Figure 1. STR710 Block Diagram
A[19:0] D[15:0] RDN WEN[1:0]
STR71xF
A[23:20] (AF) CS[3:0)
CK CKOUT RSTIN
PRCCU/PLL
EXT. MEM. INTERFACE (EMI) FLASH* Program Memory 64/128/256K 16K Data FLASH* RAM 16/32/64K APB BRIDGE 1
ARM7TDMI CPU JTDI JTCK JTMS JTRST JTDO DBGRQS BOOTEN
ARM7 NATIVE BUS
JTAG
V18[1:0] V33[6:0] VSS[9:0] V18BKP AVDD AVSS
POWER SUPPLY VREG
APB BRIDGE 2 I2C0 2 AF 2 AF 4 AF 4 AF 2 AF 3 AF 2 AF 2 AF 3 AF USBDP USBDN 1 AF
INTERRUPT CTL(EIC) 4 AF A/D TIMER0 4 AF 2 AF 4 AF OSC 14 AF TIMER1
APB BUS
I2C1 BSPI0 BSPI1 UART0 UART1 / SMARTCARD UART2 UART3 HDLC
TIMER2 TIMER3 RTC
APB BUS
STDBY RTCXTO RTCXTI WAKEUP
EXT INT (XTI) WATCHDOG
USB P0[15:0] P1[15:0] P2[15:0] I/O PORT 0 I/O PORT 1 CAN I/O PORT 2
2 AF
*Flash present in STR710F, not in STR710R
AF: alternate function on I/O port pin
8/74
STR71xF
Introduction
1.3
Related Documentation
Available from www.arm.com: ARM7TDMI Technical Reference Manual Available from http://www.st.com: STR71x Reference Manual STR7 Flash Programming Reference Manual AN1774 - STR710 Software development getting started AN1775 - STR710 Hardware development getting started AN1776 - STR710 Enhanced Interrupt Controller AN1777 - STR710 Memory Mapping AN1780 - Real Time Clock with STR710 AN1781 - Four 7 Segment Display Drive Using the STR710 The above is a selected list only, a full list STR71x application notes can be viewed at http://www.st.com.
9/74
Introduction
STR71xF
1.4
Pin Description for 144-Pin Packages
Figure 2. STR710 LQFP Pinout
P0.9/U0.TX/BOOT.0 P0.8/U0.RX/U0.TX P0.7/S1.SSN P0.6/S1.SCLK P0.5/S1.MOSI VSS V33 WEn.0 WEn.1 A.19 A.18 A.17 A.16 A.15 A.14 V18 VSS18 P0.4/S1.MISO P0.3/S0.SSN/I1.SDA P0.2/S0.SCLK/I1.SCL P0.1/S0.MOSI/U3.RX P0.0/S0.MISO/U3.TX A.13 A.12 A.11 A.10 A.9 A.8 A.7 A.6 A.5 V33 VSS P1.15/HTXD N.C. N.C. P0.10/U1.RX/U1.TX/SCDATA RDn P0.11/U1.TX/BOOT.1 P0.12/SCCLK VSS V33 P2.0/CSn.0 P2.1/CSn.1 P0.13/U2.RX/T2.OCMPA P0.14/U2.TX/T2.ICAPA P2.2/CSn.2 P2.3/CSn.3 P2.4/A.20 P2.5/A.21 P2.6/A.22 BOOTEN P2.7/A.23 P2.8 N.C. N.C. VSS V33 P2.9 P2.10 P2.11 P2.12 P2.13 P2.14 P2.15 JTDI JTMS JTCK JTDO JTRSTn NU TEST 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73
LQFP144
P1.14/HRXD/I0.SDA P1.13/HCLK/I0.SCL P1.10/USBCLK P1.9 V33 VSS A.4 A.3 A.2 A.1 A.0 D.15 D.14 D.13 D.12 D.11 D.10 USBDN USBDP P1.12/CANTX P1.11/CANRX N.C. P1.8 P1.7/T1.OCMPA VSSIO-PLL V33IO-PLL D.9 D.8 D.7 D.6 D.5 P1.6/T1.OCMPB P1.5/T1.ICAPB P1.4/T1.ICAPA P1.3/T3.ICAPB/AIN.3 P1.2/T3.OCMPA/AIN.2
10/74
N.C. TEST N.C. V33IO-PLL N.C. VSSIO-PLL N.C. DBGRQS CKOUT CK P0.15/WAKEUP N.C. RTCXTI RTCXTO STDBY RSTIN N.C. VSSBKP V18BKP N.C. N.C. V18 VSS18 N.C. D.0 D.1 D.2 D.3 D.4 AVDD AVSS N.C. N.C. N.C. P1.0/T3.OCMPB/AIN.0 P1.1/T3.ICAPA/AIN.1
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
STR71xF Table 2.
A 1 2 3 4 5 6 7 8 9 10 11 12 P0.10 VSS V33 P0.6 A.19 P0.3 P0.2 A.9 VSS A.8 A.7 A.12
Introduction STR710 BGA Ball Connections
B P2.0 RDn P0.9 P0.7 WEn.1 A.15 P0.1 A.10 V33 N.C. N.C. A.4 C P2.1 P0.11 P0.12 P0.8 WEn.0 A.16 P0.4 A.11 A.5 P1.15 P1.14 A.3 D VSS V33 P0.13 P0.14 P0.5 A.17 VSS18 A.13 A.6 P1.13 P1.10 P1.9 E P2.2 P2.3 P2.4 P2.5 P2.7 A.18 V18 P0.0 V33 VSS A.2 A.1 F P2.6 P2.8 N.C. N.C. VSS V33 A.14 A.0 D.15 D.14 D.13 P1.11/ CANRX G BOOT EN P2.9 P2.10 P2.11 P2.14 V18 D.12 D.11 D.10 USBDN USBDP N.C. H P2.12 JTMS JTCK JTDO N.C. N.C. D.1 P1.12/ CANTX P1.8 P1.7 VSS V33IOPLL J P2.13 JTRST n NU CK RTCXTO N.C. D.0 N.C. D.9 D.8 D.5 P1.6 K P2.15 TEST V33 CKOUT RTCXTI V18BK P nc AVSS P1.0 P1.5 P1.4 D.7 L JTDI TEST N.C. VSSIOPLL N.C. VSS BKP VSS18 D.3 N.C. P1.1 P1.3 D.6 M N.C. N.C. DBG RQS N.C. P0.15 STDBY RSTIN D.2 N.C. D.4 AVDD P1.2
Legend / Abbreviations for Table 3: Type: I = input, O = output, S = supply, HiZ= high impedance,
In/Output level: C = CMOS 0.3VDD/0.7VDD CT= CMOS 0.3VDD/0.7VDD with input trigger TT= TTL 0.8V/2V with input trigger C/T = Programmable levels: CMOS 0.3VDD/0.7VDD or TTL 0.8V / 2V Port and control configuration: Input: pu/pd= software enabled internal pull-up or pull down pu= in reset state, the internal 100k weak pull-up is enabled. pd = in reset state, the internal 100k weak pull-down is enabled. OD = open drain (logic level) PP = push-pull T = true OD, (P-Buffer and protection diode to VDD not implemented), 5V tolerant.
Output:
11/74
Introduction Table 3.
Pin n LQFP144 Type BGA144 Pin Name
STR71xF
STR710 Pin Description
Reset State1) Input Input Level interrupt Output Capability Active in Stdby Main function (after reset)
OD
Alternate function
PP
UART1: Receive Data input 1 A1 P0.10/U1.RX/ U1.TX/ SC.DATA I/O pd CT X 4mA T
UART1: Transmit data output.
Note: This pin may be used for Port 0.10 Smartcard DataIn/DataOut or single wire UART (half duplex) if programmed as Alternate Function Output. The pin will be tri-stated except when UART transmission is in progress X External Memory Interface: Active low read signal for external memory. It maps to the OE_N input of the external components. Select Boot Port 0.11 Configuration input UART1: Transmit data output.
2
B2
RD
O
5)
3 4 5 6
C2 C3 D1 D2
P0.11/BOOT.1 I/O pd /U1.TX P0.12/SC.CLK I/O pd VSS V33 S S
CT CT
4mA X 4mA X
X X
Port 0.12 Smartcard reference clock output Ground voltage for digital I/Os4) Supply voltage for digital I/Os4) External Memory Interface: Select Memory Bank 0 output Note: This pin is forced to output push-pull 1 mode at reset to allow boot from external memory External Memory Interface: Select Memory Bank 1 output Timer2: Output Compare A output Timer2: Input Capture A input
7
B1
P2.0/CS.0
I/O
8)
CT
8mA X
X
Port 2.0
8
C1
P2.1/CS.1 P0.13/U2.RX/ T2.OCMPA P0.14/U2.TX/ T2.ICAPA P2.2/CS.2 P2.3/CS.3
I/O
pu
2)
CT
8mA X
X
Port 2.1
9
D3
I/O pu
CT
X 4mA X
X
UART2: Port 0.13 Receive Data input UART2: Port 0.14 Transmit data output Port 2.2 Port 2.3
10
D4
I/O pu pu
2)
CT
4mA X
X
11 12
E1 E2
I/O I/O
CT CT
8mA X 8mA X
X X
External Memory Interface: Select Memory Bank 3 output External Memory Interface: Select Memory Bank 4 output
pu
2)
12/74
STR71xF Table 3.
Pin n LQFP144 Type BGA144 Pin Name
Introduction STR710 Pin Description
Reset State1) Input Input Level interrupt Output Capability Active in Stdby Main function (after reset)
OD
Alternate function
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
E3 E4 F1
P2.4/A.20 P2.5/A.21 P2.6/A.22
I/O I/O I/O I I/O
pd
3)
CT CT CT CT
8mA X 8mA X 8mA X
X X X
PP
Port 2.4 Port 2.5 Port 2.6 Boot control input. Enables sampling of BOOT[1:0] pins External Memory Interface: address bus
pd
3)
pd
3)
G1 BOOTEN E5 F2 F3 F4 F5 F6 P2.7/A.23 P2.8 N.C. N.C. VSS V33
pd
3)
CT CT
8mA X X 4mA X
X X
Port 2.7 Port 2.8
External Memory Interface: address bus External interrupt INT2
I/O pu
Not connected (not bonded) Not connected (not bonded) S S I/O pu I/O pu I/O pu I/O pu I/O pu I/O pu I/O pu I I I O I TT CT CT CT CT CT CT CT TT TT C 8mA X X 4mA X X 4mA X X 4mA X 4mA X 4mA X 4mA X 4mA X X X X X X X X Ground voltage for digital I/Os4) Supply voltage for digital I/Os4) Port 2.9 Port 2.10 Port 2.11 Port 2.12 Port 2.13 Port 2.14 Port 2.15 JTAG Data input. External pull-up required. JTAG Mode Selection Input. External pull-up required. JTAG Clock Input. External pull-up or pull-down required. JTAG Data output. Note: Reset state = HiZ. JTAG Reset Input. External pull-up required. Reserved, must be forced to ground. Reserved, must be forced to ground. Not connected (not bonded) Reserved, must be forced to ground. Not connected (not bonded) External interrupt INT3 External interrupt INT4 External interrupt INT5
G2 P2.9 G3 P2.10 G4 P2.11 H1 J1 P2.12 P2.13
G5 P2.14 K1 L1 H2 H3 H4 J2 J3 K2 P2.15 JTDI JTMS JTCK JTDO JTRST NU TEST
M1 N.C. L2 L3 TEST N.C.
13/74
Introduction Table 3.
Pin n LQFP144 Type BGA144 Pin Name
STR71xF
STR710 Pin Description
Reset State1) Input Input Level interrupt Output Capability Active in Stdby Main function (after reset)
OD
Alternate function
PP X
40 41 42 43 44 45 46 47 48 49 50
K3
V33IO-PLL
S
Supply voltage for digital I/O circuitry and for PLL reference Not connected (not bonded)
M4 N.C. L4 VSSIO-PLL S
Ground voltage for digital I/O circuitry and for PLL reference4) Not connected (not bonded)
M2 N.C. M3 DBGRQS K4 J4 M5 L5 K5 J5 CKOUT CK P0.15/ WAKEUP N.C. RTCXTI RTCXTO I O I I C TT X X CT 8mA
Debug Mode request input (active high) Clock output (fPCLK2) Note: Enabled by CKDIS register in APB Bridge 2 Reference clock input Port 0.15 Wakeup from Standby mode input.
Note: This port is input only. Not connected (not bonded) Realtime Clock input and input of 32 kHz oscillator amplifier circuit Output of 32 kHz oscillator amplifier circuit Input: Hardware Standby mode entry input active low. Caution: External pull-up to V33 required to select normal mode. X Output: Standby mode active low output following Software Standby mode entry. Note: In Standby mode all pins are in high impedance except those marked Active in Stdby X Reset input Not connected (not bonded)
51
M6 STDBY
I/O
CT
4mA X
52 53 54
M7 RSTIN H5 L6 N.C. VSSBKP
I
CT
S
X Stabilization for low power voltage regulator. Stabilization for low power voltage regulator. Requires external capacitors of at least 1F between V18BKP and VSS18BKP. See Figure 5. X Note: If the low power voltage regulator is bypassed, this pin can be connected to an external 1.8V supply. Not connected (not bonded) Not connected (not bonded)
55
K6
V18BKP
S
56 57 58
J6 H6
N.C. N.C. S
G6 V18
Stabilization for main voltage regulator. Requires external capacitors of at least 10F + 33nF between V18 and VSS18. See Figure 5.
14/74
STR71xF Table 3.
Pin n LQFP144 Type BGA144 Pin Name
Introduction STR710 Pin Description
Reset State1) Input Input Level interrupt Output Capability Active in Stdby Main function (after reset)
OD
Alternate function
59 60 61 62 63 64 65 66 67 68 69 70 71
L7 K7 J7 H7
VSS18 N.C. D.0 D.1
S
PP
Stabilization for main voltage regulator. Not connected (not bonded)
I/O I/O I/O I/O I/O S S
6) 6) 6) 6) 6)
8mA 8mA 8mA 8mA 8mA Supply voltage for A/D Converter Ground voltage for A/D Converter Not connected (not bonded) Not connected (not bonded) Not connected (not bonded) External Memory Interface: data bus
M8 D.2 L8 D.3
M10 D.4 M11 VDDA K8 J8 VSSA N.C.
M9 N.C. L9 K9 N.C. P1.0/T3.OCM PB/AIN.0 I/O pu CT 4mA X X
Port 1.0
Timer 3: Output Compare B
ADC: Analog input 0
72
P1.1/T3.ICAP L10 A/T3.EXTCLK/ I/O pu AIN.1 P1.2/T3.OCM PA/AIN.2 P1.3/T3.ICAP B/AIN.3 P1.4/T1.ICAP A/T1.EXTCLK P1.5/T1.ICAP B P1.6/T1.OCM PB
CT
4mA X
X
Port 1.1
Timer 3: Input Capture A or ADC: Analog input 1 External Clock input Timer 3: Output Compare A Timer 3: Input Capture B Timer 1: Input Capture A Timer 1: Input Capture B Timer 1: Output Compare B ADC: Analog input 2
73
M12
I/O pu
CT
4mA X
X
Port 1.2
74 75 76
L11 K11 K10
I/O pu I/O pu I/O pu
CT CT CT
4mA X 4mA X 4mA X
X X X
Port 1.3 Port 1.4 Port 1.5
ADC: Analog input 3 Timer 1: External Clock input
77 78 79 80 81 82
J12
I/O pu I/O I/O I/O I/O I/O
6) 6) 6) 6) 6)
CT
4mA X 8mA 8mA 8mA 8mA 8mA
X
Port 1.6
J11 D.5 L12 D.6 K12 D.7 J10 D.8 J9 D.9
External Memory Interface: data bus
15/74
Introduction Table 3.
Pin n LQFP144 Type BGA144 Pin Name
STR71xF
STR710 Pin Description
Reset State1) Input Input Level interrupt Output Capability Active in Stdby Main function (after reset)
OD
Alternate function
PP
83 84
H12 V33IO-PLL H11 VSSIO-PLL P1.7/T1.OCM PA P1.8
S S
Supply voltage for digital I/O circuitry and for PLL reference4) Ground voltage for digital I/O circuitry and for PLL reference4) CT CT 4mA X 4mA X X X Port 1.7 Port 1.8 Not connected (not bonded) CT CT X 4mA X 4mA X X X Port 1.11 Port 1.12 CAN: receive data input Note: On STR710 and STR712 only CAN: Transmit data output Note: On STR710 and STR712 only Timer 1: Output Compare A
85 86 87 88 89
H10 H9
I/O pu I/O pd
G12 N.C. F12 P1.11/CANRX I/O pu H8 P1.12/CANTX I/O pu
90
G11 USBDP
I/O
CT
USB bidirectional data (data +). Reset state = HiZ Note: On STR710 and STR711 only This pin requires an external pull-up to V33 to maintain a high level. USB bidirectional data (data -). Reset state = HiZ Note: On STR710 and STR711 only. 8mA 8mA 8mA External Memory Interface: data bus 8mA 8mA 8mA 8mA 8mA 8mA 8mA 8mA X X X X X Ground voltage for digital I/O circuitry4) Supply voltage for digital I/O circuitry4) External Memory Interface: address bus
91 92 93 94 95 96 97 98 99
G10 USBDN G9 D.10 G8 D.11 G7 D.12 F11 D.13 F10 D.14 F9 F8 D.15 A.0
I/O I/O I/O I/O I/O I/O I/O O O O O O S S I/O pd I/O pd
6) 6) 6) 6) 6) 6) 7) 7) 7) 7) 7)
CT
E12 A.1
100 E11 A.2 101 C12 A.3 102 B12 A.4 103 E10 VSS 104 E9 V33
105 D12 P1.9 106 D11 P1.10/ USBCLK
CT C/ T
4mA X 4mA X
X X
Port 1.9 Port 1.10 USB: 48 MHZ clock input
16/74
STR71xF Table 3.
Pin n LQFP144 Type BGA144 Pin Name
Introduction STR710 Pin Description
Reset State1) Input Input Level interrupt Output Capability Active in Stdby Main function (after reset)
OD
Alternate function
PP
107 D10
P1.13/HCLK/ I0.SCL P1.14/HRXD/ I0.SDA
I/O pd CT
X 4mA X
X
Port 1.13
HDLC: reference clock input HDLC: Receive data input
I2C clock
108 C11
I/O pu
CT
X 4mA X
X
Port 1.14
I2C serial data
109 B11 N.C. 110 B10 N.C. 111 C10 P1.15/HTXD 112 113 114 115 A9 B9 C9 D9 VSS V33 A.5 A.6 I/O pu S S O O O O O O O O O
7) 7) 7) 7) 7) 7) 7) 7) 7)
Not connected (not bonded) Not connected (not bonded) CT 4mA X X Port 1.15 HDLC: Transmit data output
Ground voltage for digital I/O circuitry4) Supply voltage for digital I/O circuitry4) 8mA 8mA 8mA 8mA 8mA 8mA 8mA 8mA 8mA X X X X X X X X X SPI0 Master in/Slave out data UART3 Transmit data output External Memory Interface: address bus
116 A11 A.7 117 A10 A.8 118 119 120 A8 B8 C8 A.9 A.10 A.11
121 A12 A.12 122 D8 A.13
123
E8
P0.0/S0.MISO I/O pu /U3.TX
CT
4mA X
X
Port 0.0
Note: Programming AF function selects UART by default. BSPI must be enabled by SPI_EN bit in the BOOTCR register. BSPI0: Master UART3: Receive out/Slave in Data input data
124
B7
P0.1/S0.MOSI I/O pu /U3.RX
CT
X 4mA X
X
Port 0.1
Note: Programming AF function selects UART by default. BSPI must be enabled by SPI_EN bit in the BOOTCR register.
17/74
Introduction Table 3.
Pin n LQFP144 Type BGA144 Pin Name
STR71xF
STR710 Pin Description
Reset State1) Input Input Level interrupt Output Capability Active in Stdby Main function (after reset)
OD
Alternate function
PP
BSPI0: Serial Clock 125 A7 P0.2/S0.SCLK I/O pu /I1.SCL CT X 4mA X X Port 0.2
I2C1: Serial clock
Note: Programming AF function selects I2C by default. BSPI must be enabled by SPI_EN bit in the BOOTCR register. SPI0: Slave Select input active low. I2C1: Serial Data
126
A6
P0.3/S0.SS/ I1.SDA
I/O pu
CT
4mA X
X
Port 0.3
Note: Programming AF function selects I2C by default. BSPI must be enabled by SPI_EN bit in the BOOTCR register. SPI1: Master in/Slave out data
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
C7 D7 E7 F7 B6 C6 D6 E6 A5 B5 C5 A3 A2 D5 A4 B4
P0.4/S1.MISO I/O pu VSS18 V18 A.14 A.15 A.16 A.17 A.18 A.19 WE.1 WE.0 V33 VSS S S O O O O O O O O S S
7) 7) 7) 7) 7) 7) 5)
CT
4mA X
X
Port 0.4
Stabilization for main voltage regulator. Stabilization for main voltage regulator. Requires external capacitors of at least 10F + 33nF between V18 and VSS18. See Figure 5. 8mA 8mA 8mA 8mA 8mA 8mA 8mA 8mA X X X External Memory Interface: address bus X X X X X External Memory Interface: active low MSB write enable output External Memory Interface: active low LSB write enable output Supply voltage for digital I/Os4) Ground voltage for digital I/Os4) CT CT CT 4mA X X 4mA X 4mA X X X X Port 0.5 Port 0.6 Port 0.7 SPI1: Master out/Slave In data SPI1: Serial Clock SPI1: Slave Select input active low
5)
P0.5/S1.MOSI I/O pu P0.6/S1.SCLK I/O pu P0.7/S1.SS I/O pu
18/74
STR71xF Table 3.
Pin n LQFP144 Type BGA144 Pin Name
Introduction STR710 Pin Description
Reset State1) Input Input Level interrupt Output Capability Active in Stdby Main function (after reset)
OD
Alternate function
PP
Port 0.8 143 C4 P0.8/U0.RX/ U0.TX I/O pd CT X 4mA T
UART0: Receive Data input
UART0: Transmit data output.
Note: This pin may be used for single wire UART (half duplex) if programmed as Alternate Function Output. The pin will be tri-stated except when UART transmission is in progress X Port 0.9 Select Boot Configuration input UART0: Transmit data output
144
B3
P0.9/U0.TX/ BOOT.0
I/O pd
CT
4mA X
1. The Reset configuration of the I/O Ports is IPUPD (input pull-up/pull down). Refer to Table 7 on page 28. The Port bit configuration at reset is PC0=1, PC1=1, PC2=0. The port data register bit (PD) value depends on the pu/pd column which specifies whether the pull-up or pull-down is enabled at reset 2. In reset state, these pins configured as Input PU/PD with weak pull-up enabled. They must be configured by software as Alternate Function (see Table 7: Port Bit Configuration Table on page 28) to be used by the External Memory Interface. 3. In reset state, these pins configured as Input PU/PD with weak pull-down enabled to output Address 0x0000 0000 using the External Memory Interface. To access memory banks greater than 1Mbyte, they need to be configured by software as Alternate Function (see Table 7: Port Bit Configuration Table on page 28). 4. V33IO-PLL and V33 are internally connected. VSSIO-PLL and VSS are internally connected. 5. During the reset phase, these pins are in input pull-up state. When reset is released, they are configured as Output Push-Pull. 6. During the reset phase, these pins are in input pull-up state. When reset is released, they are configured as Hi-Z. 7. During the reset phase, these pins are in input pull-down state. When reset is released, they are configured as Output Push-Pull. 8. During the reset phase, and after reset is released, this pin is in Output Push-Pull state.
19/74
Introduction
STR71xF
1.5
Pin description for 64-pin packages
Figure 3. STR712/STR715 LQFP64 Pinout
P0.9/U0.TX/BOOT.0 P0.8/U0.RX/U0.TX P0.7/S1.SSN P0.6/S1.SCLK P0.5/S1.MOSI VSS V18 VSS18 P0.4/S1.MISO P0.3/S0.SSN/I1.SDA P0.2/S0.SCLK/I1.SCL P0.1/S0.MOSI/U3.RX P0.0/S0.MISO/U3.TX V33 VSS P1.15/HTXD P0.10/U1.RX/U1.TX/SCDATA P0.11/U1.TX/BOOT.1 P0.12/SCCLK VSS P0.13/U2.RX/T2.OCMPA P0.14/U2.TX/T2.ICAPA BOOTEN VSS V33 JTDI JTMS JTCK JTDO nJTRST NU TEST 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
LQFP64
P1.14/HRXD/I0.SDA P1.13/HCLK/I0.SCL P1.10 P1.9 VSS P1.12/CANTX1) P1.11/CANRX1) P1.8 P1.7/T1.OCMPA VSSIO-PLL V33IO-PLL P1.6/T1.OCMPB P1.5/T1.ICAPB P1.4/T1.ICAPA P1.3/T3.ICAPB/AIN.3 P1.2/T3.OCMPA/AIN.2
1)
CANTX and CANRX in STR712F only, in STR715F they are general purpose I/Os.
20/74
V33IO-PLL VSSIO-PLL CK P0.15/WAKEUP RTCXTI RTCXTO STDBY RSTIN VSSBKP V18BKP V18 VSS18 AVDD AVSS P1.0/T3.OCMPB/AIN.0 P1.1/T3.ICAPA/AIN.1
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
STR71xF Figure 4. STR711 LQFP64 Pinout
P0.9/U0.TX/BOOT.0 P0.8/U0.RX/U0.TX P0.7/S1.SSN P0.6/S1.SCLK P0.5/S1.MOSI VSS V18 VSS18 P0.4/S1.MISO P0.3/S0.SSN/I1.SDA P0.2/S0.SCLK/I1.SCL P0.1/S0.MOSI/U3.RX P0.0/S0.MISO/U3.TX V33 VSS P1.15/HTXD
Introduction
P0.10/U1.RX/U1.TX/SCDATA P0.11/U1.TX/BOOT.1 P0.12/SCCLK VSS P0.13/U2.RX/T2.OCMPA P0.14/U2.TX/T2.ICAPA BOOTEN VSS V33 JTDI JTMS JTCK JTDO nJTRST NU TEST
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
LQFP64
P1.14/HRXD/I0.SDA P1.13/HCLK/I0.SCL P1.10/USBCLK P1.9 VSS USBDN USBDP P1.8 P1.7/T1.OCMPA VSSIO-PLL V33IO-PLL P1.6/T1.OCMPB P1.5/T1.ICAPB P1.4/T1.ICAPA P1.3/T3.ICAPB/AIN.3 P1.2/T3.OCMPA/AIN.2
Table 4.
A 1 2 3 4 5 6 7 8
STR711 BGA Ball Connections
B P0.11 VSS P0.7 VSS P0.4 P0.1 P0.0 P1.14 C P0.12 P0.13 BOOTEN P0.8 V18 P0.3 P1.10 VSS D P0.14 VSS JTDI JTDO P0.6 P1.13 USBDN P1.8 E V33 JTMS NU AVDD P1.9 USBDP P1.7 V33IOPLL F JTCK JTRSTn STDBY V18BKP P1.0 VSSIOPLL P1.6 P1.4 G TEST P0.15 RTCXTI RSTIN V18 AVSS P1.5 P1.3 H V33IOPLL VSSIOPLL CK RTCXTO VSSBKP VSS18 P1.1 P1.2
P0.10 P0.9 P0.5 VSS18 P0.2 V33 VSS P1.15
V33IO-PLL VSSIO-PLL CK P0.15/WAKEUP RTCXTI RTCXTO STDBY RSTIN VSSBKP V18BKP V18 VSS18 AVDD AVSS P1.0/T3.OCMPB/AIN.0 P1.1/T3.ICAPA/AIN.1
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
21/74
Introduction Table 5.
A 1 2 3 4 5 6 7 8
1)
STR71xF STR712/715 BGA Ball Connections
B P0.11 VSS P0.7 VSS P0.4 P0.1 P0.0 P1.14 C P0.12 P0.13 BOOTEN P0.8 V18 P0.3 P1.10 VSS D P0.14 VSS JTDI JTDO P0.6 P1.13 P1.12/ CANTX1) P1.8 E V33 JTMS NU AVDD P1.9 P1.11/ CANRX1) P1.7 V33IOPLL F JTCK JTRSTn STDBY V18BKP P1.0 VSSIOPLL P1.6 P1.4 G TEST P0.15 RTCXTI RSTIN V18 AVSS P1.5 P1.3 H V33IOPLL VSSIOPLL CK RTCXTO VSSBKP VSS18 P1.1 P1.2
P0.10 P0.9 P0.5 VSS18 P0.2 V33 VSS P1.15
CANTX and CANRX in STR712F only, in STR715F they are general purpose I/Os.
Legend / Abbreviations for Table 6: Type: I = input, O = output, S = supply, HiZ= high impedance,
In/Output level: C = CMOS 0.3VDD/0.7VDD CT= CMOS 0.8V / 2V with input trigger TT= TTL 0.3V/0.7VDD with input trigger C/T = Programmable levels: CMOS 0.3VDD/0.7VDD or TTL 0.8V / 2V Port and control configuration: Input: pu/pd= software enabled internal pull-up or pull down pu= in reset state, the internal 100k weak pull-up is enabled. pd = in reset state, the internal 100k weak pull-down is enabled. OD = open drain (logic level) PP = push-pull T = true OD, (P-Buffer and protection diode to VDD not implemented),
Output:
5V tolerant.
22/74
STR71xF Table 6.
Pin n Type LQFP64 BGA64 Pin Name
Introduction STR711/STR712/STR715 Pin Description
Reset State1) Input Input Level interrupt Output Capability Active in Stdby Main function (after reset)
OD
Alternate function
PP
UART1: Receive Data input 1 P0.10/U1.RX/ A1 U1.TX/ SC.DATA I/O pd CT X 4mA T
UART1: Transmit data output.
Note: This pin may be used for Port 0.10 Smartcard DataIn/DataOut or single wire UART (half duplex) if programmed as Alternate Function Output. The pin will be tri-stated except when UART transmission is in progress X Select Boot Port 0.11 Configuration input UART1: Transmit data output.
2 3 4 5
B1
P0.11/BOOT.1 I/O pd /U1.TX
CT CT
4mA 4mA
X
C1 P0.12/SC.CLK I/O pd B2 VSS C2 P0.13/U2.RX/ T2.OCMPA P0.14/U2.TX/ T2.ICAPA S I/O pu
Port 0.12 Smartcard reference clock output Ground voltage for digital I/Os2)
CT
X 4mA
X
X
UART2: Port 0.13 Receive Data input UART2: Port 0.14 Transmit data output
Timer2: Output Compare A output Timer2: Input Capture A input
6
D1
I/O pu
CT
4mA
X
X
7 8 9
C3 BOOTEN D2 VSS E1 V33
I S S I I I O I
CT
Boot control input. Enables sampling of BOOT[1:0] pins Ground voltage for digital I/Os2) Supply voltage for digital I/Os2)
10 D3 JTDI 11 E2 JTMS 12 F1 JTCK 13 D4 JTDO 14 F2 JTRST 15 E3 NU 16 G1 TEST 17 H1 V33IO-PLL 18 H2 VSSIO-PLL 19 H3 CK
TT TT C 8mA TT X
JTAG Data input. External pull-up required. JTAG Mode Selection Input. External pull-up required. JTAG Clock Input. External pull-up or pull-down required. JTAG Data output. Note: Reset state = HiZ. JTAG Reset Input. External pull-up required. Reserved, must be forced to ground. Reserved, must be forced to ground.
S S I C
Supply voltage for digital I/O circuitry and for PLL reference2) Ground voltage for digital I/O circuitry and for PLL reference2) Reference clock input
23/74
Introduction Table 6.
Pin n Type LQFP64 BGA64 Pin Name
STR71xF
STR711/STR712/STR715 Pin Description
Reset State1) Input Input Level interrupt Output Capability Active in Stdby Main function (after reset)
OD
Alternate function
PP
20 G2
P0.15/ WAKEUP
Port 0.15 Wakeup from Standby mode input. I TT X X Note: This port is input only. Realtime Clock input and input of 32 kHz oscillator amplifier circuit Output of 32 kHz oscillator amplifier circuit Input: Hardware Standby mode entry input active low. Caution: External pull-up to V33 required to select normal mode. X Output: Standby mode active low output following Software Standby mode entry. Note: In Standby mode all pins are in high impedance except those marked Active in Stdby. X Reset input X Stabilization for low power voltage regulator. Stabilization for low power voltage regulator. Requires external capacitors of at least 1F between V18BKP and VSS18BKP. See Figure 5. X Note: If the low power voltage regulator is bypassed, this pin can be connected to an external 1.8V supply. Stabilization for main voltage regulator. Requires external capacitors of at least 10F + 33nF between V18 and VSS18. See Figure 5. Stabilization for main voltage regulator. Supply voltage for A/D Converter Ground voltage for A/D Converter CT 4mA X X Port 1.0 Timer 3: Output ADC: Analog input 0 Compare B Timer 3: Input Capture A or External Clock input
21 G3 RTCXTI 22 H4 RTCXTO
23 F3 STDBY
I/O
CT
4mA
X
24 G4 RSTIN 25 H5 VSSBKP
I
CT S
26 F4 V18BKP
S
27 G5 V18 28 H6 VSS18 29 E4 VDDA 30 G6 VSSA 31 F5 P1.0/T3.OCM PB/AIN.0
S S S S I/O pu
P1.1/T3.ICAP 32 H7 A/T3.EXTCLK I/O pu /AIN.1 33 H8 34 G8 35 F8 P1.2/T3.OCM PA/AIN.2 P1.3/T3.ICAP B/AIN.3 I/O pu I/O pu
CT
4mA
X
X
Port 1.1
ADC: Analog input 1
CT CT CT
4mA 4mA 4mA
X X X
X X X
Port 1.2 Port 1.3 Port 1.4
Timer 3: Output ADC: Analog input 2 Compare A Timer 3: Input Capture B Timer 1: Input Capture A ADC: Analog input 3 Timer 1: External Clock input
P1.4/T1.ICAP I/O pu A/T1.EXTCLK
24/74
STR71xF Table 6.
Pin n Type LQFP64 BGA64 Pin Name
Introduction STR711/STR712/STR715 Pin Description
Reset State1) Input Input Level interrupt Output Capability Active in Stdby Main function (after reset)
OD
Alternate function
36 G7 37 F7
P1.5/T1.ICAP B P1.6/T1.OCM PB
PP
I/O pu I/O pu S S I/O pu I/O pd
CT CT
4mA 4mA
X X
X X
Port 1.5 Port 1.6
Timer 1: Input Capture B Timer 1: Output Compare B
38 E8 V33IO-PLL 39 F6 VSSIO-PLL 40 E7 P1.7/T1.OCM PA
Supply voltage for digital I/O circuitry and for PLL reference2) Ground voltage for digital I/O circuitry and for PLL reference2) CT CT CT CT 4mA 4mA X 4mA 4mA X X X X X X X X Port 1.7 Port 1.8 Port 1.11 Port 1.12 CAN: receive data input Note: On STR710 and STR712 only CAN: Transmit data output Note: On STR710 and STR712 only Timer 1: Output Compare A
41 D8 P1.8
42 E6 P1.11/CANRX I/O pu 43 D7 P1.12/CANTX I/O pu
42 E6 USBDP
I/O
CT
USB bidirectional data (data +). Reset state = HiZ Note: On STR710 and STR711 only This pin requires an external pull-up to V33 to maintain a high level. USB bidirectional data (data -). Reset state = HiZ Note: On STR710 and STR711 only. Ground voltage for digital I/O circuitry2)
43 D7 USBDN 44 C8 VSS 45 E5 P1.9 46 C7 P1.10/USBCL K P1.13/HCLK/I 0.SCL
I/O S I/O pd I/O pd
CT
CT C/ T CT
4mA 4mA
X X
X X
Port 1.9 Port 1.10 USB: 48 MHZ clock input
47 D6
I/O pd
X 4mA
X
X
HDLC: Port 1.13 reference clock I2C clock input Port 1.14 HDLC: Receive I2C serial data data input
48 B8
P1.14/HRXD/I I/O pu 0.SDA I/O pu S S
CT CT
X 4mA 4mA
X X
X X
49 A8 P1.15/HTXD 50 A7 VSS 51 A6 V33
Port 1.15 HDLC: Transmit data output Ground voltage for digital I/O circuitry2) Supply voltage for digital I/O circuitry2)
25/74
Introduction Table 6.
Pin n Type LQFP64 BGA64 Pin Name
STR71xF
STR711/STR712/STR715 Pin Description
Reset State1) Input Input Level interrupt Output Capability Active in Stdby Main function (after reset)
OD
Alternate function
PP
SPI0 Master in/Slave out data 52 B7 P0.0/S0.MISO I/O pu /U3.TX CT 4mA X X Port 0.0
UART3 Transmit data output
Note: Programming AF function selects UART by default. BSPI must be enabled by SPI_EN bit in the BOOTCR register. BSPI0: Master out/Slave in data UART3: Receive Data input
53 B6
P0.1/S0.MOSI I/O pu /U3.RX
CT
X 4mA
X
X
Port 0.1
Note: Programming AF function selects UART by default. BSPI must be enabled by SPI_EN bit in the BOOTCR register. BSPI0: Serial Clock I2C1: Serial clock
54 A5
P0.2/S0.SCLK I/O pu /I1.SCL
CT
X 4mA
X
X
Port 0.2
Note: Programming AF function selects I2C by default. BSPI must be enabled by SPI_EN bit in the BOOTCR register. SPI0: Slave Select input active low. I2C1: Serial Data
55 C6
P0.3/S0.SS/I1 I/O pu .SDA
CT
4mA
X
X
Port 0.3 Note: Programming AF function selects I2C by default. BSPI must be enabled by SPI_EN bit in the BOOTCR register.
56 B5 P0.4/S1.MISO I/O pu 57 A4 VSS18 58 C5 V18 59 B4 VSS S S S
CT
4mA
X
X
Port 0.4
SPI1: Master in/Slave out data
Stabilization for main voltage regulator. Stabilization for main voltage regulator. Requires external capacitors of at least 10F + 33nF between V18 and VSS18. See Figure 5. Ground voltage for digital I/Os CT CT CT 4mA X 4mA 4mA X X X X X X Port 0.5 Port 0.6 Port 0.7 SPI1: Master out/Slave In data SPI1: Serial Clock SPI1: Slave Select input active low
60 A3 P0.5/S1.MOSI I/O pu 61 D5 P0.6/S1.SCLK I/O pu 62 B3 P0.7/S1.SS I/O pu
26/74
STR71xF Table 6.
Pin n Type LQFP64 BGA64 Pin Name
Introduction STR711/STR712/STR715 Pin Description
Reset State1) Input Input Level interrupt Output Capability Active in Stdby Main function (after reset)
OD
Alternate function
PP
Port 0.8 63 C4 P0.8/U0.RX/U I/O pd 0.TX CT X 4mA T
UART0: Receive Data input
UART0: Transmit data output.
Note: This pin may be used for single wire UART (half duplex) if programmed as Alternate Function Output. The pin will be tri-stated except when UART transmission is in progress X Port 0.9 Select Boot Configuration input UART0: Transmit data output
64 A2
P0.9/U0.TX/B OOT.0
I/O pd
CT
4mA
X
1. The Reset configuration of the I/O Ports is IPUPD (input pull-up/pull down). Refer to Table 7 on page 28. The Port bit configuration at reset is PC0=1, PC1=1, PC2=0. The port data register bit (PD) value depends on the pu/pd column which specifies whether the pull-up or pull-down is enabled at reset 2. V33IO-PLL and V33 are internally connected. VSSIO-PLL and VSS are internally connected.
1.6
External Connections
Figure 5. Recommended External Connection of V18 and V18BKP pins
33 nF 129 128
V18
33 nF 58 57
V18
LQFP144
V18BKP V18
LQFP64
V18BKP V18
54 55 58 59 1F 10 F
25 26 27 28 1F 10 F
27/74
Introduction
STR71xF
1.7
Table 7.
I/O Port Configuration
Port Bit Configuration Table
PxD Configuration Mode Input Buffer Register Read access I/O pin I/O pin I/O pin I/O pin 0 I/O pin last value written I/O pin I/O pin Write access don't care don't care 0 1 don't care 0 or 1 0 or 1 don't care don't care PxC2 PxC1 PxC0 Register Register Register
TTL Input Floating CMOS Input Floating CMOS Input Pull-Down (IPUPD) CMOS Input Pull-Up (IPUPD) Analog input Output Open-Drain Output Push-Pull OUTPUT
TTL floating CMOS floating CMOS PullDown CMOS Pull-Up AIN N.A. N.A.
0 0 0 0 0 1 1 1 1
0 1 1 1 0 0 0 1 1
1 0 1 1 0 0 1 0 1
INPUT
Alternate Function Open-Drain CMOS floating Alternate Function Push-Pull
Legend: AIN: Analog Input CMOS: CMOS Input levels IPUPD: Input Pull Up /Pull Down TTL: TTL Input levels
CMOS floating
N.A.: not applicable. In Output mode, a read access to the port gets the output latch value.
28/74
STR71xF
Introduction
1.8
Memory Mapping
Figure 6. Memory Map
APB Memory Space
0xFFFF FFFF
Addressable Memory Space 4 Gbytes
0xFFFF FFFF 0xFFFF F800 EIC
0xFFFF F800 0xE000 E000 0xE000 D000 0xE000 C000
EIC WDG RTC TIMER 3 TIMER 2
4K 4K 4K 4K 4K 4K 4K 4K 4K 4K 4K 4K 4K 4K 4K 4K
4K
7
0xE000 B000
APB2 0xE000 0000
64K
TIMER 1
0xE000 A000
TIMER 0
0xE000 9000 0xE000 8000
CLKOUT ADC reserved IOPORT 2 IOPORT 1 IOPORT 0
6
0xE000 7000
APB1 0xC000 0000
64K
FLASH Memory Space 272 Kbytes + regs
0x4010 DFBF FLASH Registers 0x4010 0000
0xE000 6000 0xE000 5000 0xE000 4000 0xE000 3000
5
0xA000 0000 PRCCU
36b
1K
0x400C 4000
reserved
reserved
0xE000 2000 0xE000 1000
XTI APB BRIDGE 2 REGS
B1F1
8K
0xE000 0000
4
0x8000 0000 Reserved
0x400C 2000 B1F0
8K
0xC001 0000
reserved
4K
0x400C 0000 reserved
0xC000 F000 0xC000 E000 0xC000 D000
reserved HDLC + RAM reserved reserved BSPI 1 BSPI 0 CAN USB + RAM UART 3 UART 2
4K 4K 4K 4K 4K 4K 4K 4K 4K 4K 4K 4K 4K 4K 4K 4K
3
EXTMEM
0x4004 0000
See Figure 8
0x6000 0000
64MB
B0F7
64K
0xC000 C000 0xC000 B000
0x4003 0000
2
B0F6
0x4000 0000 FLASH
0xC000 A000 0xC000 9000 0xC000 8000 0x4002 0000 0xC000 7000 0xC000 6000 B0F5
64K
256K+16K+36b
1
64K
0x2000 0000 RAM
0xC000 5000 0xC000 4000
UART 1 UART 0 reserved
64K
0x4001 0000
0xC000 3000 B0F4
32K
0xC000 2000
I2C 1
I C0 APB BRIDGE 1 REGS
2
0
0x0000 0000 FLASH/RAM/EMI
0x4000 0x4000 0x4000 0x4000 0x4000
8000 6000 4000 2000 0000
B0F3 B0F2 B0F1 B0F0
8K 8K 8K 8K
0xC000 1000 0xC000 0000
(*) FLASH aliased at 0x0000 0000h by system decoder for booting with valid instruction upon RESET from Block B0 (8 Kbytes)
Reserved
29/74
Introduction Figure 7. Mapping of Flash Memory Versions
FLASH Memory Space 128 Kbytes + 16K RWW + regs
0x4010 DFBF FLASH Registers 0x4010 0000 reserved 0x400C 4000 B1F1 0x400C 2000 B1F0 0x400C 0000 reserved 0x4004 0000 0x4004 0000 0x400C 4000 FLASH Registers 0x4010 0000 reserved 0x400C 4000 B1F1 0x400C 2000
STR71xF
FLASH Memory Space 64 Kbytes + 16K RWW + regs
0x4010 DFBF
FLASH Memory Space 256 Kbytes + 16K RWW + regs
0x4010 DFBF FLASH Registers 0x4010 0000 reserved
36b
36b
36b
8K
8K
0x400C 2000
B1F1
8K
8K
0x400C 0000
B1F0
8K
0x400C 0000
B1F0
8K
reserved 0x4004 0000
reserved
reserved
64K
reserved
64K
B0F7
64K
0x4003 0000
0x4003 0000
0x4003 0000
reserved
64K
reserved
64K
B0F6
64K
0x4002 0000
0x4002 0000
0x4002 0000
reserved
64K
0x4001 0000
B0F5
64K
0x4001 0000
B0F5
64K
0x4001 0000 B0F4 0x4000 0x4000 0x4000 0x4000 0x4000 8000 6000 4000 2000 0000 B0F3 B0F2 B0F1 B0F0
32K 8K 8K 8K 8K
0x4000 0x4000 0x4000 0x4000 0x4000 8000 6000 4000 2000 0000
B0F4 B0F3 B0F2 B0F1 B0F0
32K 8K 8K 8K 8K
0x4000 0x4000 0x4000 0x4000 0x4000 8000 6000 4000 2000 0000
B0F4 B0F3 B0F2 B0F1 B0F0
32K 8K 8K 8K 8K
STR715FR0xx STR711FR0xx STR712FR0xx
STR710FZ1xx STR711FR1xx STR712FR1xx
STR710F72xx STR711FR2xx STR712FR2xx
Table 8.
RAM Memory Mapping
RAM Size Start Address End Address
Part Number STR715FR0xx STR711FR0xx STR712FR0xx STR710FZ1xx STR711FR1xx STR712FR1xx STR710FR2xx STR710Rxx STR711FR2xx STR712FR2xx
16 Kbytes
0x2000 0000
0x2000 3FFF
32 Kbytes
0x2000 0000
0x2000 7FFF
64 Kbytes
0x2000 0000
0x2000 FFFF
30/74
STR71xF Figure 8. External Memory Map
Addressable Memory Space 4 Gbytes
0xFFFF FFFF 0xFFFF F800 EIC
Introduction
7
0xE000 0000 APB2
6
0xC000 0000 APB1
External Memory Space 64 MBytes
5
0xA000 0000 PRCCU
0x6C00 0x6C00 0x6C00 0x6C00
000C 0008 0004 0000
BCON3 BCON2 BCON1 BCON0
register register register register
4
0x66FF FFFF
0x8000 0000 Reserved
Bank3 CSn.3
16M
3
0x6000 0000 EXTMEM
0x6600 0000 0x64FF FFFF Bank2 CSn.2
16M
0x6400 0000
2
0x4000 0000 FLASH
0x62FF FFFF Bank1 CSn.1
16M
0x6200 0000 0x60FF FFFF
1
CSn.0
0x2000 0000 RAM
Bank0
16M
0x6000 0000
0
0x0000 0000 FLASH/RAM/EMI
Reserved
Drawing not in scale
31/74
Electrical parameters
STR71xF
2
2.1
Electrical parameters
Parameter conditions
Unless otherwise specified, all voltages are referred to VSS.
2.1.1
Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA=25C and TA=TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean3).
2.1.2
Typical values
Unless otherwise specified, typical data are based on TA=25C, V33=3.3V (for the 3.0VV333.6V voltage range) and V18=1.8V. They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean2).
2.1.3
Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.
2.1.4
Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 9.
2.1.5
Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 10. Figure 9. Pin loading conditions Figure 10. Pin input voltage
STR7 PIN
STR7 PIN
L=50pF
VIN
32/74
STR71xF
Electrical parameters
2.2
Absolute maximum ratings
Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 9. Voltage characteristics
Ratings External 3.3V Supply voltage (including AVDD and V33IOPLL) 2)
Symbol
Min
Max
Unit
V33- VSS
-0.3
4.0
V18BKP - VSSBKP
Digital 1.8V Supply voltage on V18BKP backup supply 2) Input voltage on true open drain pin (P0.10) 1) Input voltage on any other pin 1) Variations between different 3.3V power pins Variations between different 1.8V power pins 5) Variations between all the different ground pins Electro-static discharge voltage (Human Body Model) Electro-static discharge voltage (Machine Model)
-0.3
2.0
V
VSS-0.3 VSS-0.3 50 25 50
+5.5 V33+0.3 50 25 50 mV
VIN
|V33x| |V18x| |VSSX - VSS| VESD(HBM) VESD(MM)
see : Absolute Maximum Ratings (Electrical Sensitivity) on page 47
33/74
Electrical parameters Table 10.
Symbol IV33 IVSS IIO
STR71xF Current characteristics
Ratings Total current into V33/V33IO-PLL power lines (source) 2) Total current out of VSS/VSSIO-PLL ground lines (sink) 2) Output current sunk by any I/O and control pin Output current source by any I/Os and control pin Injected current on RSTIN pin Max. 150 150 25 - 25 5 5 5 25 mA Unit
IINJ(PIN) 1) & 3)
Injected current on CK pin Injected current on any other pin 4)
IINJ(PIN) 1)
Notes:
Total injected current (sum of all I/O and control pins) 4)
1. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive injection is induced by VIN>V33 while a negative injection is induced by VINTable 11.
Thermal characteristics
Ratings Storage temperature range Value -65 to +150 Unit C
Symbol TSTG TJ
Maximum junction temperature (see Section 3.2: Thermal characteristics on page 69)
34/74
STR71xF
Electrical parameters
2.3
Operating conditions
Subject to general operating conditions for V33, and TA. Table 12.
Symbol
General Operating Conditions
Parameter Conditions Accessing SRAM or external memory with 0 wait states Accessing FLASH in burst mode Executing from FLASH with RWW Accessing FLASH with 0 wait states Min 0 0 0 0 0 3.0 1.4 -40 Max 66 50 MHz 45 1) 33 33 3.6 1.8 85 MHz V V C Unit
fMCLK
Internal CPU Clock frequency
fPCLK V33 V18BKP TA
Internal APB Clock frequency Standard Operating Voltage (includes V33I0_PLL) Backup Operating Voltage Ambient temperature range 6 Partnumber Suffix
1. Data guaranteed by characterization, not tested in production
Table 13.
Symbol
Operating Conditions at power-up / power-down
Parameter V33 rise time rate Conditions Subject to general operating conditions for TA. Min 20 20 Typ Max Unit s/V ms/V
tV33
35/74
Electrical parameters
STR71xF
2.3.1
Supply current characteristics
The current consumption is measured as described in Figure 9 on page 32 and Figure 10 on page 32.
Total current consumption
The MCU is placed under the following conditions:

All I/O pins in input mode with a static value at V33 or VSS (no load) All peripherals are disabled except if explicitly mentioned. Embedded Regulators are used to provide 1.8V (except if explicitly mentioned)
Subject to general operating conditions for V33, and TA. Table 14.
Symbol
Total Current consumption
Parameter Supply current in RUN mode Conditions fMCLK=66 MHz, RAM execution fMCLK=32 MHz, Flash non-burst execution TA=25C OSC32K bypassed Typ 1) Max 2) 73.6 49.3 10 12 503) 30 A A 100 mA Unit
IDD4)
Supply current in STOP mode Supply current in STANDBY mode
Notes: 1. Typical data are based on TA=25C, V33=3.3V. 2. Data based on characterization results, tested in production at V33, fMCLK max. and TA max. 3. Based on device characterisation, device power consumption in STOP mode at TA 25C is predicted to be 30A or less in 99.730020% of parts. 4. The conditions for these consumption measurements are described in application note AN2100.
36/74
STR71xF Table 15.
Symbol
Electrical parameters Typical power consumption data
Parameter Conditions MCLK = 16 MHz, PCLK = FCLK = 16 MHz MCLK = 32 MHz, PCLK = FCLK = 32 MHz All periphs ON MCLK = 48 MHz, PCLK = FCLK = 24 MHz RUN mode current from RAM All periphs OFF MCLK = 48 MHz 39 48 27 47 62 21 36 53 1.7 13 37 18 10 10 9 5 1 A mA MCLK = 64 MHz, PCLK = FCLK = 32 MHz MCLK = 16 MHz MCLK = 32 MHz 50 63 16 26 Typical current on V33 23 40 Unit
IDDRUN
MCLK = 64 MHz MCLK = 16 MHz, PCLK = FCLK = 16 MHz All periphs ON RUN mode current from FLASH MCLK = 32 MHz, PCLK = FCLK = 32 MHz MCLK = 48 MHz, PCLK = FCLK = 24 MHz MCLK = 16 MHz All periphs OFF MCLK = 32 MHz MCLK = 48 MHz
IDDSLOW IDDWAIT IDDLPWAIT
SLOW mode current WAIT mode current (all periphs ON) LPWAIT mode current
MCLK = CK_AF (32 kHz), MVR off PCLK = FCLK = 1 MHz CK_AF (32 kHz), Main VReg off, FLASH in power-down Main VReg off, FLASH in power down, RTC on
IDDSTOP
STOP mode current Main VReg off, FLASH in power down, RTC off LP VReg on, LVD on, RTC on LP VReg off (ext 1.8V on V18BKP), LVD on, RTC on
IDDSB
STANDBY mode current
LP VReg off (ext1.8V on V18BKP), LVD off, RTC on LP VReg off (ext 1.8V on V18BKP), LVD off, RTC off
37/74
Electrical parameters
STR71xF
Figure 11. STOP IDD vs. V33
100 90 80 70
Figure 12. STANDBY IDD vs. V33
25
TA=-45 to +25C TA=+90C
20
TA=-45C TA=0C TA=+25C TA=+90C
IDDSTDBY (A)
3 3.1 3.2 3.3 3.4 3.5 3.6
IDDSTOP (A)
15
60 50 40 30 20 10 0
10
5
0 3 3.1 3.2 3.3 3.4 3.5 3.6
V33 (V)
V33 (V)
Figure 13. WFI IDD vs. V33
100
90
IDDWFI (A)
80
70
TA=-40 to +90C
60
50 3 3.1 3.2 3.3 3.4 3.5 3.6
V33 (V)
38/74
STR71xF
Electrical parameters
On-Chip Peripherals
Table 16.
Symbol
Peripheral current consumption
Parameter Conditions Typ 3.42 5.81 0.88 1.1 1.05 mA Unit
IDD(PLL1) PLL1 supply current IDD(PLL2) PLL2 supply current IDD(TIM) TIM Timer supply current 1)
TA= 25C
IDD(BSPI) BSPI supply current 2) IDD(UART) UART supply current 2) IDD(I2C) IDD(ADC) I2C supply current 2) ADC supply current when converting 5)
TA= 25C, fPCLK=33 MHz
0.45 1.89 1.82 2.08 1.11
IDD(HDLC) HDLC supply current 2) IDD(USB) IDD(CAN)
Notes:
USB supply current 2) CAN supply current 2)
1. Data based on a differential IDD measurement between reset configuration and timer counter running at 16MHz. No IC/OC programmed (no I/O pads toggling). 2. Data based on a differential IDD measurement between the on-chip peripheral when kept under reset and not clocked and the on-chip peripheral when clocked and not kept under reset. No I/O pads toggling. 3. Data based on a differential IDD measurement between reset configuration and continuous A/D conversions.
39/74
Electrical parameters
STR71xF
2.3.2
Clock and timing characteristics
External Clock Sources
Subject to general operating conditions for V33, and TA. Table 17.
Symbol fCK VCKH VCKL tw(CK) tw(CK) tr(CK) tf(CK) IL
Notes: 1. Data based on design simulation and/or technology characteristics, not tested in production.
CK External Clock Characteristics
Parameter External clock source frequency CK input pin high level voltage CK input pin low level voltage CK high or low time 1) time 1) VSSVINV33 Conditions Min 0 0.7xV33 VSS 25 ns CK rise or fall 5 1 A Typ Max 16.5 V33 V 0.3xV33 Unit MHz
CK Input leakage current
Figure 14. CK External Clock Source
90% VCKH 10%
VCKL tr(CK) tf(CK) tw(CKH) tw(CKL)
TCK
fCLK EXTERNAL CLOCK SOURCE CK IL STR710
40/74
STR71xF Table 18.
Symbol fRTCXT1 VRTCXT1H VRTCXT1L
Electrical parameters RTCXT1 External Clock Characteristics
Parameter External clock source frequency RTCXT1 input pin high level voltage RTCXT1 input pin low level voltage Conditions Min 0 0.7xV33 VSS 100 ns 5 VSSVINV33 1 A Typ Max 500 V33 V 0.3xV33 Unit kHz
tw(RTCXT1) 1) tw(RTCXT1) RTCXT1 high or low time tr(RTCXT1) 1) tf(RTCXT1) RTCXT1 rise or fall time IL
Notes:
RTCXT1 Input leakage current
1. Data based on design simulation and/or technology characteristics, not tested in production.
41/74
Electrical parameters
STR71xF
OSC32K Crystal / Ceramic Resonator Oscillator
The STR7 RTC clock can be supplied with a 32kHz Crystal/Ceramic resonator oscillators. All the information given in this paragraph are based on characterization results with specified typical external components. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and start-up stabilization time. Refer to the crystal resonator manufacturer for more details (frequency, package, accuracy...). Table 19.
Symbol RF CL1 CL2 i2 gm
32K Oscillator characteristics (fOSC32K= 32.768kHz)
Parameter Feedback resistor Recommended load capacitance versus equivalent serial resistance of the crystal (RS)1) RTCXT2 driving current Oscillator Transconductance V33 is stabilized RS=40K V33=3.3V VIN=VSS Conditions Typ 2.7 12.5 Unit M pF
3.2 8 3
A A/V s
tSU(OSC32KHZ)2) startup time
Notes:
1. The oscillator selection can be optimized in terms of supply current using an high quality resonator with small RS value for example MSIV-TIN32.768kHz. Refer to crystal manufacturer for more details 2. tSU(OSC32KHZ) is the start-up time measured from the moment it is enabled (by software) to a stabilized 32kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer
Figure 15. Typical Application with a 32kHz Crystal
WHEN RESONATOR WITH INTEGRATED CAPACITORS
i2
FEEDBACK LOOP
CL1
RTCXT1
fOSC32K
CL2
32KHz RESONATOR RTCXT2
RF STR710
42/74
STR71xF Figure 16. RTC Crystal Oscillator and Resonator
Electrical parameters
RTCXTO
RS CL CL
PLL Electrical Characteristics
V33 = 3.0 to 3.6V, V33IOPLL = 3.0 to 3.6V, TA = -40 / 85 C unless otherwise specified. Table 20.
Symbol
PLL1 Characteristics
Value Parameter Test Conditions Min Typ Max 165 1.5 3.0 3.0 8.25 MHz MHz MHz fPLL1x 24 FREF_RANGE = 0 FREF_RANGE = 1 PLL input clock MX[1:0]='00' or `01' FREF_RANGE = 1 MX[1:0]='10' or `11' PLL input clock duty cycle FREF_RANGE = 0 MX[1:0]='01' or `11' FREF_RANGE = 0 MX[1:0]='00' or `10' Unit
fPLLCLK1 PLL multiplier output clock
fPLL1
3.0 25 125
RTCXTO
RTCXTI
RTCXTI
DEVICE
DEVICE
6 75
MHz % kHz
250
kHz
fFREE1
PLL free running frequency FREF_RANGE = 1 MX[1:0]='01' or `11' FREF_RANGE = 1 MX[1:0]='00' or `10'
FREF_RANGE = 0 Stable Input Clock
250
kHz
500
kHz
300
s
tLOCK1
PLL lock time
Stable V33IOPLL, V18 FREF_RANGE = 1 Stable Input Clock Stable V33IOPLL, V18
600
s
tJITTER1 PLL jitter (peak to peak)
tPLL = 4 MHz, MX[1:0]='11' Global Output division = 32 (Output Clock = 2 MHz)
0.7
2
ns
43/74
Electrical parameters Table 21.
Symbol
STR71xF PLL2 Characteristics
Value Parameter PLL multiplier output clock PLL input clock FREF_RANGE = 1 FREF_RANGE = 0 Stable Input Clock Stable V33IOPLL, V18 FREF_RANGE = 1 Stable Input Clock Stable V33IOPLL, V18 PLL jitter (peak to peak) tPLL = 4 MHz, MX[1:0]='11' Global Output division = 32 (Output Clock = 2 MHz) 0.7 3.0 5 300 MHz s Test Conditions Min Typ Max 140 1.5 3.0 MHz MHz Unit
fPLLCLK2 fPLL2
fPLL x 28 FREF_RANGE = 0
tLOCK2
PLL lock time
600
s
tJITTER2
2
ns
Table 22.
Symbol tWULPWFI tWUSTOP tWUSTBY
Low-power Mode Wake-up Timing
Parameter Wake-up from LPWFI mode Wake-up from STOP mode Wake-up from STANDBY mode Typ 26 131 2 Unit s s s
44/74
STR71xF
Electrical parameters
2.3.3
Memory characteristics
Flash Memory
V33 = 3.0 to 3.6V, TA = -40 to 85 C unless otherwise specified. Table 23.
Symbol tPW tPDW tPB0 tPB1 tES tES tES tES tRPD2) tPSL2) tESL2) NEND_B0 NEND_B1 tRET
Flash memory characteristics
Value Parameter Word Program Double Word Program Bank 0 Program (256K) Bank 1 Program (16K) Sector Erase (64K) Double Word Program Double Word Program Not preprogrammed Preprogrammed Not preprogrammed Preprogrammed Not preprogrammed Preprogrammed Not preprogrammed Preprogrammed Test Conditions Min. Typ 40 60 1.6 130 2.3 1.9 0.7 0.6 8.0 6.6 0.9 0.8 2.1 170 4.0 3.3 1.1 1.0 13.7 11.2 1.5 1.3 20 10 300 10 100 TA=55 Min time from Erase Resume to next Erase Suspend 20 Max1) s s s ms s Unit
Sector Erase (8K)
s
Bank 0 Erase (256K)
s
Bank 1 Erase (16K) Recovery when disabled Program Suspend Latency Erase Suspend Latency Endurance (Bank 0 sectors) Endurance (Bank 1 sectors) Data Retention (Bank 0 and Bank 1) Erase Suspend Rate
s s s s kcycles kcycles Years
tESR
20
ms
Notes: 1. TA=85C after 0 cycles. Guaranteed by characterization, not tested in production. 2. Guaranteed by design, not tested in production
2.3.4
EMC characteristics
Susceptibility tests are performed on a sample basis during product characterization.
45/74
Electrical parameters
STR71xF
Functional EMS (Electro Magnetic Susceptibility)
Based on a simple running application on the product (toggling 2 LEDs through I/O ports), the product is stressed by two electro magnetic events until a failure occurs (indicated by the LEDs).
ESD: Electro-Static Discharge (positive and negative) is applied on all pins of the device until a functional disturbance occurs. This test conforms with the IEC 1000-4-2 standard. FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and VSS through a 100pF capacitor, until a functional disturbance occurs. This test conforms with the IEC 1000-4-4 standard.
A device reset allows normal operations to be resumed. The test results are given in the table below based on the EMS levels and classes defined in application note AN1709.
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application. Software recommendations: The software flowchart must include the management of runaway conditions such as:

Corrupted program counter Unexpected reset Critical Data corruption (control registers...)
Prequalification trials: Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the RESET pin or the Oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). In the case of an ARM7 CPU, in order to write robust code that can withstand all kinds of stress, such as very strong electromagnetic disturbance, it is mandatory that the Data Abort, Prefetch Abort and Undefined Instruction exceptions are managed by the application software. This will prevent the code going into an undefined state or performing any unexpected operation.
46/74
STR71xF Table 24.
Symbol VFESD
Electrical parameters EMS data
Parameter Conditions Level/ Class 2B
Voltage limits to be applied on any I/O pin to V33=3.3V, TA=+25C, fMCLK=32MHz induce a functional disturbance conforms to IEC 1000-4-2 Fast transient voltage burst limits to be V33=3.3V, TA=+25C, fMCLK=32MHz applied through 100pF on VDD and VSS pins conforms to IEC 1000-4-4 to induce a functional disturbance
VEFTB
4A
Electro Magnetic Interference (EMI)
Based on a simple application running on the product (toggling 2 LEDs through the I/O ports), the product is monitored in terms of emission. This emission test is in line with the norm SAE J 1752/3 which specifies the board and the loading of each pin. Table 25. EMI data
Max vs. [fOSC4M/fHCLK] Unit 16/ 48MHz 17 17 11 4 16/8MHz 19 16 11 3 dBV
Symbol
Parameter
Conditions
Monitored Frequency Band
SEMI
Peak level
0.1MHz to 30 MHz V33=3.3V, TA=+25C, 30 MHz to 130 MHz LQFP64 package conforming to SAE J 130 MHz to 1GHz 1752/3 SAE EMI Level
Notes: 1. Not tested in production. 2. BGA and LQFP devices have similar EMI characteristics.
Absolute Maximum Ratings (Electrical Sensitivity)
Based on three different tests (ESD, LU and DLU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181.
Electro-Static Discharge (ESD)
Electro-Static Discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). Two models can be simulated: Human Body Model and Machine Model. This test conforms to the JESD22-A114A/A115A standard.
47/74
Electrical parameters Table 26.
Symbol VESD(HBM) VESD(MM)
STR71xF ESD Absolute Maximum ratings
Ratings Electro-static discharge voltage (Human Body Model) Electro-static discharge voltage (Machine Model) Electro-static discharge voltage (Charge Device Model) TA=+25C Conditions Maximum value 1) 2000 200 750 on corner pins, 500 on others Unit
V
VESD(CDM)
Notes: 1. Data based on characterization results, not tested in production.
Static and Dynamic Latch-Up
LU: 3 complementary static tests are required on 10 parts to assess the latch-up performance. A supply overvoltage (applied to each power supply pin) and a current injection (applied to each input, output and configurable I/O pin) are performed on each sample. This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the application note AN1181. DLU: Electro-Static Discharges (one positive then one negative test) are applied to each pin of 3 samples when the micro is running to assess the latch-up performance in dynamic mode. Power supplies are set to the typical values, the oscillator is connected as near as possible to the pins of the micro and the component is put in reset mode. This test conforms to the IEC1000-4-2 and SAEJ1752/3 standards. For more details, refer to the application note AN1181.
Electrical Sensitivities
Symbol LU Parameter Static latch-up class TA=+25C TA=+85C TA=+105C VDD=3.3V, fOSC4M=4MHz, fMCLK=32MHz, TA=+25C Conditions Class 1) A A A A
DLU
Dynamic latch-up class
Notes: 1. Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the JEDEC specifications, that means when a device belongs to Class A it exceeds the JEDEC standard. B Class strictly covers all the JEDEC criteria (international standard).
48/74
STR71xF
Electrical parameters
2.3.5
I/O port pin characteristics
General Characteristics
Subject to general operating conditions for V33 and TA unless otherwise specified. All unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or an external pull-up or pull-down resistor. Table 27.
Symbol VIL VIH Vhys VIL VIH Vhys VIL VIH IINJ(PIN)
I/O static characteristics
Parameter Input low level voltage 1) Input high level voltage 1) Schmitt trigger voltage hysteresis
2)
Conditions
Min
Typ
Max 0.3V33
Unit
V CMOS ports 0.7V33 0.8 0.9 P0.15 WAKEUP 2 1.35 0.4 0.8 TTL ports Input high level voltage 1) Injected Current on any I/O pin 2.0 4 mA 25 VSSVINV33 VIN=VSS VIN=V33 110 110 150 150 5 1 700 700 A k k pF V V 0.8 V Input high level voltage 1) Schmitt trigger voltage hysteresis
2)
V
Input low level voltage 1)
Input low level voltage 1)
IINJ(PIN) Total injected current (sum of all 3) I/O and control pins) Ilkg RPU RPD CIO
Notes: 1. Data based on characterization results, not tested in production.
Input leakage current 4) Weak pull-up equivalent resistor5) Weak pull-down equivalent resistor5) I/O pin capacitance
2. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested. 3. When the current limitation is not possible, the VIN absolute maximum rating must be respected, otherwise refer to IINJ(PIN) specification. A positive injection is induced by VIN>V33 while a negative injection is induced by VIN49/74
Electrical parameters
STR71xF
Figure 17. RPU vs. V33 with VIN=VSS
0.0
Figure 18. IPU vs. V33 with VIN=VSS
0
-50.0
TA=-45C TA=0C TA=+25C TA=+90C
-5
TA=-45C TA=0C TA=+25C TA=+90C
-10
RPU (kohm)
IPU (A)
-100.0
-15
-150.0
-20 -200.0
-25
-250.0 3 3.1 3.2 3.3 3.4 3.5 3.6
-30 3 3.1 3.2 3.3 3.4 3.5 3.6
V33 (V)
V33 (V)
Figure 19. RPD vs. V33 with VIN=V33
300.0
Figure 20. IPD vs. V33 with VIN=V33
30
250.0
TA=-45C TA=0C TA=+25C TA=+90C
25
TA=-45C TA=0C TA=+25C TA=+90C
200.0
RPD (kohm)
20
150.0
IPD (A)
3 3.1 3.2 3.3 3.4 3.5 3.6
15
100.0
10
50.0
5
0.0
0 3 3.1 3.2 3.3 3.4 3.5 3.6
V33 (V)
V33 (V)
50/74
STR71xF
Electrical parameters
Output Driving Current
Subject to general operating conditions for V33 and TA unless otherwise specified. Table 28. Output driving current
Parameter Output low level voltage for an I/O pin when 8 pins are sunk at same time (see Figure 21) Output high level voltage for an I/O pin when 4 pins are sourced at same time (see Figure 21 and Figure 23) Output low level voltage for an I/O pin when 8 pins are sunk at same time (see Figure 21) Output high level voltage for an I/O pin when 4 pins are sourced at same time (see Figure 21 and Figure 23) Conditions Min Max Unit
I/O Symbol Type VOL 1)
Standard
IIO=+4mA
0.4
VOH 2)
IIO=-4mA
V33-0.8 V
High Current
VOL 1)
IIO=+8mA
0.4
VOH 2)
IIO=-8mA
V33-0.8
Notes: 1. The IIO current sunk must always respect the absolute maximum rating specified in Table 10 and the sum of IIO (I/O ports and control pins) must not exceed IVSS. 2. The IIO current sourced must always respect the absolute maximum rating specified in Table 10 and the sum of IIO (I/O ports and control pins) must not exceed IV33.
51/74
Electrical parameters Figure 21. Typical VOL and VOH at V33=3.3V (High current ports)
3.09 3.08 3.07 3.06
0.16
STR71xF
TA=-45C TA=0C TA=+25C TA=+90C
0.14 0.12 0.10
VOH(V)
3.05 3.04 3.03 3.02 3.01 -4 -8
VOL(V)
0.08 0.06 0.04 0.02 0.00 -4
TA=-45C TA=0C TA=+25C TA=+90C
-8
Iio(mA)
Iol (mA)
52/74
STR71xF Figure 22. Typical VOL vs. V33
0.16 0.14 0.12 0.18 0.16 0.14
Electrical parameters
VOL (V) Iio=4mA
0.10 0.08 0.06 0.04 0.02 0.00 3 3.1 3.2 3.3 3.4 3.5 3.6
VOL(V) Iio=8mA
0.12 0.10 0.08 0.06 0.04 0.02 0.00 3 3.1 3.2 3.3 3.4 3.5 3.6
TA=-45C TA=0C TA=+25C TA=+90C
TA=-45C TA=0C TA=+25C TA=+90C
V33 (V)
V33 (V)
Figure 23. Typical VOH vs. V33
3.60 3.40 3.20 3.60 3.40 3.20
VOH (V) Iio=4mA
VOH(V) Iio=8mA
3.00 2.80 2.60 2.40 2.20 2.00 3 3.1 3.2 3.3 3.4 3.5 3.6
3.00 2.80 2.60 2.40 2.20 2.00 3 3.1 3.2 3.3 3.4 3.5 3.6
TA=-45C TA=0C TA=+25C TA=+90C
TA=-45C TA=0C TA=+25C TA=+90C
V33 (V)
V33 (V)
53/74
Electrical parameters
STR71xF
RSTIN Pin
The RSTIN pin input driver is CMOS. A permanent pull-up is present which is the same as as RPU (seeTable 27 on page 49) Subject to general operating conditions for V33 and TA unless otherwise specified. Table 29.
Symbol
RESET pin characteristics
Parameter Conditions Min Typ 1) Max 0.8 V 2 500 1.2 ns s Unit
VIL(RSTINn) RSTIN Input low level voltage 1) VIH(RSTINn) RSTIN Input high level voltage 1) VF(RSTINn) RSTIN Input filtered pulse2)
VNF(RSTINn) RSTIN Input not filtered pulse2)
Notes: 1. Data based on characterization results, not tested in production. 2) Data guaranteed by design, not tested in production.
Figure 24. Recommended RSTIN pin protection.1)
Recommended
V33 V33
V33
0.01F EXTERNAL RESET CIRCUIT 0.01F
4.7k RSTIN
RPU
Filter INTERNAL RESET
STR7X
Required
Notes: 1. The RPU pull-up equivalent resistor is based on a resistive transistor (corresponding IPU current characteristics described in Figure 18). 2. The reset network protects the device against parasitic resets. 3. The user must ensure that the level on the RSTIN pin can go below the VIL(RSTINn) max. level specified in Table 29. Otherwise the reset will not be taken into account internally.
2.3.6
TIM timer characteristics
Subject to general operating conditions for V33, fMCLK, and TA unless otherwise specified. Refer to Section 2.3.5: I/O port pin characteristics on page 49 for more details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output...). Table 30.
Symbol tw(ICAP)in
TIM characteristics
Parameter Input capture pulse time Conditions Min 2 Typ Max Unit tCK_TIM
54/74
STR71xF Table 30.
Symbol tres(TIM)
Electrical parameters TIM characteristics
Parameter Timer resolution time fPCLK2 = 30MHz fCK_TIM(MAX) = fMCLK fCK_TIM = fMCLK = 60MHz 33.3 0 0 fCK_TIM/4 15 16 1 fPCLK2 = 30MHz 0.033 65536 2184 65536x 65536 fPCLK2 = 30MHz 143.1 ns MHz MHz bit tPCLK s tPCLK s Conditions Min 1 Typ Max Unit tPCLK2
fEXT
Timer external clock frequency
ResTIM tCOUNTER
Timer resolution 16-bit Counter clock period when internal clock is selected
TMAX_COUNT Maximum Possible Count
2.3.7
EMI - Memory Interface
Subject to general operating conditions for VDD, fHCLK, and TA unless otherwise specified. The tables below use a variable which is derived from the EMI_BCONn registers (described in the STR71x Reference Manual) and represents the special characteristics of the programmed memory cycle. Table 31.
Symbol tMCLK tC
EMI general characteristics
Parameter CPU clock period Memory cycle time wait states Value 1 / fMCLK tMCLK x (1 + [C_LENGTH])
55/74
Electrical parameters Table 32.
Symbol tRCR tRP tRDS tRDH tRAS tRAH tRAT tRRT
STR71xF EMI Read Operation
Value Parameter Test Conditions Min1) Read to CSn Removal Time Read Pulse Time Read Data Setup Time Read Data Hold Time Read Address Setup Time Read Address Hold Time Read Address Turnaround Time RDn Turnaround Time MCLK=50 MHz 4 wait states 50 pf load on all pins 0.65 1.9 20 tMCLK 19 98 22 0 27 1.5*tM
CLK
Unit Typ tMCLK tC Max1) 21 100 ns ns ns ns 33 2 3.25 21 ns ns ns ns
See Figure 25, Figure 26, Figure 27 and Figure 28 for related timing diagrams.
1. Data based on characterisation results, not tested in production.
Table 33.
Symbol tWCR tWP tWDS1 tWDS2 tWDH tWAS tWAH tWAT tWWT
EMI Write Operation
Value Parameter Test Conditions Min1) WEn to CSn Removal Time Write Pulse Time Write Data Setup Time 1 Write Data Setup Time 2 Write Data Hold Time Write Address Setup Time Write Address Hold Time Write Address Turnaround Time WEn Turnaround Time MCLK=50 MHz 3 wait states 50 pf load on all pins 20 77.5 97 77 20 27 0.6 1.75 20 tMCLK Typ tMCLK tC tC + tMCLK tC tMCLK 1.5*tMCLK Max1) 22.5 80 100 80 23 33 3 4.1 23 ns ns ns ns ns ns ns ns ns Unit
See Figure 29, Figure 30, Figure 31 and Figure 32 for related timing diagrams.
1. Data based on characterisation results, not tested in production.
56/74
STR71xF Figure 25. Read Cycle Timing: 16-bit READ on 16-bit Memory
tRAH
Electrical parameters
A[23:0]
Address tRP
RDn
tRCR
CSn.x
WEn.x
tRDS tRAS tRDH
D[15:0]
(Input)
Data Input
Figure 26. Read Cycle Timing: 32-bit READ on 16-bit Memory
tRAT tRAH tRAH
A[23:0]
Address tRP tRRT
Address tRP
RDn
tRCR
CSn.x
WEn.x
tRAS tRDS tRDH tRDS tRDH
D[15:0]
(Input)
Data Input
Data Input
See Table 32 for read timing data. Figure 27. Read Cycle Timing: 16-bit READ on 8-bit Memory
tRAT tRAH tRAH
A[23:0]
Address tRP tRRT
Address tRP
RDn
tRCR
CSn.x
WEn.x
tRAS tRDS tRDH tRDS tRDH
D[7:0]
(Input)
Data Input
Data Input
57/74
Electrical parameters Figure 28. Read Cycle Timing: 32-bit READ on 8-bit Memory
tRAT tRAH tRAH tRAT tRAH tRAT tRAH
STR71xF
A[23:0]
Address tRP tRRT
Address tRP tRRT
Address tRP tRRT
Address tRP
RDn
tRCR
CSn.x
WEn.x
tRAS tRDS tRDH tRDS tRDH tRDS tRDH tRDS tRDH
D[7:0]
(Input)
Data Input
Data Input
Data Input
Data Input
See Table 32 for read timing data. Figure 29. Write Cycle Timing: 16-bit WRITE on 16-bit Memory
tWAH
A[23:0]
Address
RDn
tWCR
CSn.x
tWAS tWP
WEn.x
tWDS1 tWDH
D[15:0]
(Output)
Data Output
Figure 30. Write Cycle Timing: 32-bit WRITE on 16-bit Memory
tWAT tWAH tWAH
A[23:0]
address
address
RDn
tWCR
CSn.x
tWP tWWT tWP
WEn.x
tWAS tWDS1 Data Output tWDH tWDS2 Data Output tWDH
D[15:0]
(Output)
See Table 41 for write timing data.
58/74
STR71xF Figure 31. Write Cycle Timing: 16-bit WRITE on 8-bit Memory
tWAT tWAH tWAH
Electrical parameters
A[23:0]
address
address
RDn
tWCR
CSn.x
tWP tWWT tWP
WEn.x
tWAS tWDS1 Data Output tWDH tWDS2 Data Output tWDH
D[7:0]
(Output)
Figure 32. Write Cycle Timing: 32-bit WRITE on 8-bit Memory
tWAT tWAH tWAH tWAT tWAH tWAT tWAH
A[23:0]
address
address
address
address
RDn
tWCR
CSn.x
tWP tWWT tWP tWWT tWP tWWT tWP
WEn.x
tWAS tWDS1 Data Output tWDH tWDS2 Data Output tWDH tWDS2 Data Output tWDH tWDS2 Data Output tWDH
D[7:0]
(Output)
See Table 33 for write timing data.
59/74
Electrical parameters
STR71xF
2.3.8
Communications interfaces
I2C - Inter IC Control Interface
Subject to general operating conditions for V33, fPCLK1, and TA unless otherwise specified. The STR7 I2C interface meets the requirements of the Standard I2C communication protocol described in the following table with the restriction mentioned below:
Note:
Restriction: The I/O pins which SDA and SCL are mapped to are not "True" Open-Drain: when configured as open-drain, the PMOS connected between the I/O pin and V33 is disabled, but it is still present. Also, there is a protection diode between the I/O pin and V33. Consequently, when using this I2C in a multi-master network, it is not possible to power off the STR7X while some another I2C master node remains powered on: otherwise, the STR7X will be powered by the protection diode. Refer to I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL). Table 34. I2C Characteristics
Standard mode I2C Min tw(SCLL) tw(SCLH) tsu(SDA) th(SDA) tr(SDA) tr(SCL) tf(SDA) tf(SCL) th(STA) tsu(STA) tsu(STO) tw(STO:STA) Cb
Notes: 1. Data based on standard I2C protocol requirement, not tested in production. 2. The device must internally provide a hold time of at least 300ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL. 3. The maximum hold time of the START condition has only to be met if the interface does not stretch the low
1)
Fast mode I2C5) Unit Min 1) 1.3 0.6 100 0 2) 900 3) 300 ns Max 1) s
Symbol
Parameter
Max 1)
SCL clock low time SCL clock high time SDA setup time SDA data hold time SDA and SCL rise time
4.7 4.0 250 0 3) 1000
20+0.1C
b
SDA and SCL fall time START condition hold time Repeated START condition setup time STOP condition setup time STOP to START condition time (bus free) Capacitive load for each bus line 4.0 4.7 4.0 4.7
300
20+0.1C
b
300
0.6 0.6 0.6 1.3 400 400 s s s pF
60/74
STR71xF
period of SCL signal. 4. Measurement points are done at CMOS levels: 0.3xVDD and 0.7xVDD. 5. fPCLK1, must be at least 8MHz to achieve max fast I2C speed (400kHz).
Electrical parameters
6. The following table gives the values to be written in the I2CCCR register to obtain the required I2C SCL line frequency.
Figure 33. Typical Application with I2C Bus and Timing Diagram 4)
VDD 4.7k I
2C
VDD 4.7k 100 100 SDA SCL
BUS
STR7
REPEATED START START
tsu(STA)
SDA
tw(STO:STA)
START
tf(SDA)
SCL
tr(SDA)
tsu(SDA)
th(SDA)
STOP
th(STA)
tw(SCKH)
tw(SCKL)
tr(SCK)
tf(SCK)
tsu(STO)
Table 35.
SCL Frequency Table (fPCLK1=8 MHz.,V33 = 3.3 V)
fSCL (kHz) 400 300 200 100 50 20 I2CCCR Value RP=4.7k 83 85h 8Ah 24h 4Ch C4h
Legend: RP = External pull-up resistance fSCL = I2C speed NA = Not achievable
Note:
For speeds around 200 kHz, achieved speed can have 5% tolerance For other speed ranges, achieved speed can have 2% tolerance The above variations depend on the accuracy of the external components used.
USB Characteristics
The USB interface is USB-IF certified (Low Speed and Full Speed).
61/74
Electrical parameters
STR71xF
2.3.9
ADC characteristics
Subject to general operating conditions for AVDD, fPCLK2, and TA unless otherwise specified. Table 36.
Symbol fMOD VAIN Ilkg PBR SINAD THD ZIN CADC tCONV
ADC characteristics
Parameter Modulator Oversampling frequency Conversion voltage range 2)3) VINIADC
Standby mode
Notes: 1. Unless otherwise specified, typical data are based on TA=25C and AVDD-AVSS=3.3V. They are given only as design guidelines and are not tested. 2. Any added external serial resistor will downgrade the ADC accuracy (especially for resistance greater than 10k). Data based on characterization results, not tested in production. 3. Calibration is needed once after each power-up.
62/74
STR71xF Table 37. ADC Accuracy with fPCLK2 = 20MHz, fADC=10MHz, AVDD=3.3V
Parameter Converted code when AIN=0V 1) Conditions Min 2370 1480 1.23
Electrical parameters
Symbol ADC_DATA(0V)
Typ
Max 2565 1680
Unit Decimal code V
ADC_DATA(2.5V) Converted code when AIN=2.5V 1) VCM Center voltage of Sigma-Delta Modulator1) Total unadjusted error Differential linearity error1) Integral linearity error 1)
1.25
1.30
TUE |ED| |EL|
In this type of ADC, calibration is necessary to correct gain error and offset errors. Once calibrated, the TUE is limited to the ILE. 1.96 2.36 2.19 LSB 3.95
1. Data based on characterisation, not tested in production. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (nonrobust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. The effect of negative injection current on robust pins is specified in Section 2.3.5. Any positive injection current within the limits specified for IINJ(PIN) and IINJ(PIN) in Section 2.3.5 does not affect the ADC accuracy.
63/74
Electrical parameters Figure 34. ADC Accuracy Characteristics
STR71xF
4095 4094 4093 (2)
(3) (1)
Digital Result ADC_DATA Register
ADC_DATA(0V) ADC_DATA(2.5V)
5 4 3 2 1 0 1 AVSS 2 3
EL ED 1 LSBIDEAL
Out of range
1633 VCM
3100 3101 3102 3103
4093 4094 4095 AVDD
VAIN (LSBIDEAL)
(1) Example of an actual transfer curve (2) The ideal transfer curve (3) End point correlation line
1LSB
IDEAL
= -----------------------------------------------
AVDD - AVSS 4095
ED=Differential Linearity Error: maximum deviation between actual steps and the ideal one. EL=Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line.
Analog Power Supply and Reference Pins
The AVDD and AVSS pins are the analog power supply of the A/D converter cell. They act as the high and low reference voltages for the conversion. Separation of the digital and analog power pins allow board designers to improve A/D performance. Conversion accuracy can be impacted by voltage drops and noise in the event of heavily loaded or badly decoupled power supply lines (see: General PCB Design Guidelines).
General PCB Design Guidelines
To obtain best results, some general design and layout rules should be followed when designing the application PCB to shield the noise-sensitive, analog physical interface from noise-generating CMOS logic signals.

Use separate digital and analog planes. The analog ground plane should be connected to the digital ground plane via a single point on the PCB. Filter power to the analog power planes. It is recommended to connect capacitors, with good high frequency characteristics, between the power and ground lines, placing
64/74
STR71xF
Electrical parameters 0.1F and optionally, if needed 10pF capacitors as close as possible to the STR7 power supply pins and a 1 to 10F capacitor close to the power source (see Figure 35).
The analog and digital power supplies should be connected in a star network. Do not use a resistor, as AVDD is used as a reference voltage by the A/D converter and any resistance would cause a voltage drop and a loss of accuracy. Properly place components and route the signal traces on the PCB to shield the analog inputs. Analog signals paths should run over the analog ground plane and be as short as possible. Isolate analog signals from digital signals that may switch while the analog inputs are being sampled by the A/D converter. Do not toggle digital outputs near the A/D input being converted.
Software Filtering of Spurious Conversion Results
For EMC performance reasons, it is recommended to filter A/D conversion outliers using software filtering techniques. Figure 35. Power Supply Filtering
STR710 1 to 10F
STR7 DIGITAL NOISE FILTERING
0.1F
VSS
V33
V33
POWER SUPPLY SOURCE (3.3V) EXTERNAL NOISE FILTERING
0.1F
AVDD
AVSS
65/74
Package characteristics
STR71xF
3
3.1
Package characteristics
Package Mechanical Data
Figure 36. 64-Pin Low Profile Quad Flat Package (10x10)
mm Min 0.05 1.35 0.17 0.09 12.00 10.00 12.00 10.00 0.50 0 0.45 3.5 0.60 1.00 64 7 0 1.40 0.22 Typ Max 1.60 0.15 0.002 Min inches Typ Max 0.063 0.006
Dim.
D D1 A1 A A2
A A1 A2 b
1.45 0.053 0.055 0.057 0.27 0.007 0.009 0.011 0.20 0.004 0.472 0.394 0.472 0.394 0.020 3.5 0.039 7 0.75 0.018 0.024 0.030 0.008
b
c D D1
E1
E e
E E1 e
c
L L1 N
L1 h L
Number of Pins
Recommended footprint (dimensions in mm)
1
66/74
STR71xF Figure 37. 144-Pin Low profile Quad Flat Package
Package characteristics
Dim.
D D1 D3 A1 108 109 73 72 0.08 mm .003 in. b Seating Plane E A A2
mm Min 0.05 1.35 0.17 0.09 1.40 0.22 Typ Max 1.60 Min
inches(1) Typ Max 0.063 0.006 0.057 0.011 0.008
A A1 A2 b c D D1
E3 E1
0.15 0.002 1.45 0.053 0.27 0.007 0.20 0.004
21.80 22.00 22.20 0.858 0.867 0.874 19.80 20.00 20.20 0.780 0.787 0.795 17.50 0.689 21.80 22.00 22.20 0.858 0.867 0.874 19.80 20.00 20.20 0.780 0.787 0.795 17.50 0.50 0 0.45 3.5 0.60 1.00 7 0 0.689 0.020 3.5 0.039 7 0.75 0.018 0.024 0.030
b
D3 E E1
144 1 e
37 36 c L1
E3 e K
L h
L L1
Number of Pins
Jedec Ref. MS-026-BFB
N 144 1.Values in inches are converted from mm and rounded to 3 decimal digits.
Recommended footprint (dimensions in mm)
67/74
Package characteristics Figure 38. 64-Low Profile Fine Pitch Ball Grid Array Package
mm Min 1.210 0.270 1.120 Typ Max Min 0.011 1.700 0.048
STR71xF
Dim. A A1 A2 b D D1 E E1 e f ddd N
inches Typ Max 0.067 0.044
0.450 0.500 0.550 0.018 0.020 0.022 7.750 8.000 8.150 0.305 0.315 0.321 5.600 5.600 0.220 0.220 7.750 8.000 8.150 0.305 0.315 0.321 0.720 0.800 0.880 0.028 0.031 0.035 1.050 1.200 1.350 0.041 0.047 0.053 0.120 Number of Pins 64 0.005
Figure 39. 144-Low Profile Fine Pitch Ball Grid Array Package
mm Min 1.21 0.21 1.12 0.35 0.40 8.80 8.80 0.80 0.60 0.10 0.15 0.08 Number of Pins N 144 Typ Max Min 0.008 0.044 0.45 0.014 0.016 0.018 0.346 0.346 0.031 0.024 0.004 0.006 0.003 1.70 0.048 inches Typ Max 0.067
Dim. A A1 A2 b D D1 E E1 e F ddd eee fff
9.85 10.00 10.15 0.388 0.394 0.400 9.85 10.00 10.15 0.388 0.394 0.400
68/74
STR71xF
Package characteristics
3.2
Thermal characteristics
The average chip-junction temperature, TJ, in degrees Celsius, may be calculated using the following equation: TJ = TA + (PD x JA) Where:

(1)
TA is the Ambient Temperature in C, JA is the Package Junction-to-Ambient Thermal Resistance, in C/W, PD is the sum of PINT and PI/O (PD = PINT + PI/O), PINT is the product of IDD and VDD, expressed in Watts. This is the Chip Internal Power.
PI/O represents the Power Dissipation on Input and Output Pins; Most of the time for the application PI/O < PINT and can be neglected. On the other hand, PI/O may be significant if the device is configured to drive continuously external modules and/or memories. An approximate relationship between PD and TJ (if PI/O is neglected) is given by: PD = K / (TJ + 273C) Therefore (solving equations 1 and 2): K = PD x (TA + 273C) + JA x PD2 where: K is a constant for the particular part, which may be determined from equation (3) by measuring PD (at equilibrium) for a known TA. Using this value of K, the values of PD and TJ may be obtained by solving equations (1) and (2) iteratively for any value of TA. Table 38.
Symbol
(2)
(3)
Thermal characteristics
Parameter Value Unit
JA JA JA JA
Thermal Resistance Junction-Ambient LQFP 144 - 20 x 20 mm / 0.5 mm pitch Thermal Resistance Junction-Ambient LQFP 64 - 10 x 10 mm / 0.5 mm pitch Thermal Resistance Junction-Ambient LFBGA 64 - 8 x 8 x 1.7mm Thermal Resistance Junction-Ambient LFBGA 144 - 10 x 10 x 1.7mm
42 45 58 50
C/W C/W C/W C/W
69/74
Product history
STR71xF
4
Product history
There are two versions of the STR710F series products. The two versions are functionally identical and differ only with the points listed below. Version "A" was the first version produced and delivered. The second version, version "Z", is currently being phased into production and will replace version "A". Version "Z" has lower power consumption in STOP mode. Marking The difference between the two versions is visible on the marking of the product, with the version letter on top of the part number. This version letter is visible in Figure 40 shows a TQFP144 "A" STR710 and a TQFP64 "Z" STR712 Figure 40. Version Marking
A STR710FZ2T6 2208JVG MLT225571
Z STR712FR2 T6 2208JVG MLT225571
Table 39.
A and Z version differences
Feature A version Z version
ARM7TDMI core device Identification (ID) code register (see Version bits [31:28] = 0001 ARM7TDMI Technical Reference Manual) Low power mode consumption in STOP mode at 25 C Not guaranteed Typical 49 A
Version bits [31:28] = 0010
50 A maximum at 25C. Less than 30 A at 25 C for 99.730020% of parts
70/74
STR71xF
Order codes
5
Order codes
Table 40. Order Codes
FLASH Kbytes 128+16 256+16 0 128+16 256+16 0 64+16 128+16 256+16 64+16 128+16 256+16 64+16 128+16 256+16 64+16 128+16 256+16 64+16 64+16 RAM Kbyte s 32 64 64 32 64 64 16 32 64 Yes STR711FR0T6 STR711FR1T6 STR711FR2T6 STR712FR0H6 STR712FR1H6 STR712FR2H6 STR712FR0T6 STR712FR1T6 STR712FR2T6 STR715FR0H6 STR715FR0T6 16 32 64 16 No 32 64 Yes 16 No 32 64 16 No 16 LQFP64 10 x 10 LFBGA64 8 x 8 1.7 32 LQFP64 10 x10 LFBGA64 8 x 8 1.7 LQFP64 10x10 No 30 -40 to +85C LFBGA64 8 x 8 1.7 Yes Yes Yes 48 LFBGA144 10 x 10 1.7 Yes Yes Yes 48 LQFP144 20 x 20 EMI USB CAN I/O Ports Package Temp. Range
Partnumber STR710FZ1T6 STR710FZ2T6 STR710RZT6 STR710FZ1H6 STR710FZ2H6 STR710RZH6 STR711FR0H6 STR711FR1H6 STR711FR2H6
71/74
Revision history
STR71xF
6
Revision history
Table 41.
Date 17-Mar-2004 05-Apr-2004 08-Apr-2004 15-Apr-2004
Document revision history
Revision 1 2 2.1 2.2 First Release Updated "Electrical parameters" on page 32 Corrected STR712F Pinout. Pins 43/42 swapped. PDF hyperlinks corrected. Corrected description of STDBY, V18, VSS18 V18BKP VSSBKP pins Added IDDrun typical data Updated BSPI max. baudrate. Updated "EMI - Memory Interface" on page 55 Corrected Flash sector B1F0/F1 address in Figure 6: Memory Map on page 29 Corrected Table 6 on page 23 LQFP64 TEST pin is 16 instead of 17. Added to TQPFP64 column: pin 7 BOOTEN, pin 17 V33IO-PLL Changed description of JTCK from `External pull-down required' to `External pull-up or pull down required'. Changed "Product Preview" to "Preliminary Data" on page 1 and 3 Renamed `PU/PD' column to `Reset state' in Table 6 on page 23 Added reference to STR7 Flash Programming Reference Manual Added STR715F devices and modified RAM size of STR71xF1 devices Added BGA package in Section 3 Updated ordering information in Section 5. Added PLL duty cycle min and max. in PLL Electrical Characteristics on page 43 Changes
7-Jul-2004
3
29-Oct-2004
4
25-Jan-2005
5
19-Apr-2005
6
72/74
STR71xF Table 41.
Date
Revision history Document revision history
Revision Changes Updated feature description on page 1 Update overview Section 1.1 Added OD/PP to P0.12 in Table 6 Changed name of WFI mode to WAIT mode Changed Memory Map Table 6: Ext. Memory changed to 64 MB and flash register changed to 36 bytes. Added Power Consumption Table 14 Modified BGA144 F3, F5, F12 and G12 in Table 2 and Table 3 Update EMI Timing Table 25 and Figure 29 Added Flashless device. Changed reset state of pins P1.10 and P1.13 from pu to pd, P0.15 from pu to floating and removed x in interrupt column for P1.15 and P1.12 in Table 3 and Table 6 Added notes under Table 3 on EMI pin reset state. Corrected inch value for d3 in Figure 37 Added footprint diagrams in Figure 37 and Figure 39 Updated Section 2: Electrical parameters
13-Oct-2005
7
22-May-2006
8
73/74
STR71xF
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
(c) 2006 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com
74/74


▲Up To Search▲   

 
Price & Availability of STR710FBZ2

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X